*Memos:
vstack() can get the 1D or more D vertically(row-wisely) stacked tensor of zero or more elements from the one or more 0D or more D tensors of zero or more elements as shown below:
*Memos:
-
vstack()
can be used with torch but not with a tensor. - The 1st argument with
torch
istensors
(Required-Type:tuple
orlist
oftensor
ofint
,float
,complex
orbool
). *Basically, the size of tensors must be the same. - There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. -
My post explains
out
argument.
-
-
row_stack() is the alias of
vstack()
.
import torch
tensor1 = torch.tensor(2)
tensor2 = torch.tensor(7)
tensor3 = torch.tensor(4)
torch.vstack(tensors=(tensor1, tensor2, tensor3))
# tensor([[2], [7], [4]])
tensor1 = torch.tensor([2, 7, 4])
tensor2 = torch.tensor([8, 3, 2])
tensor3 = torch.tensor([5, 0, 8])
torch.vstack(tensors=(tensor1, tensor2, tensor3))
# tensor([[2, 7, 4], [8, 3, 2], [5, 0, 8]])
tensor1 = torch.tensor([[2, 7, 4], [8, 3, 2]])
tensor2 = torch.tensor([[5, 0, 8], [3, 6, 1]])
tensor3 = torch.tensor([[9, 4, 7], [1, 0, 5]])
torch.vstack(tensors=(tensor1, tensor2, tensor3))
# tensor([[2, 7, 4],
# [8, 3, 2],
# [5, 0, 8],
# [3, 6, 1],
# [9, 4, 7],
# [1, 0, 5]])
tensor1 = torch.tensor([[2., 7., 4.], [8., 3., 2.]])
tensor2 = torch.tensor([[5., 0., 8.], [3., 6., 1.]])
tensor3 = torch.tensor([[9., 4., 7.], [1., 0., 5.]])
torch.vstack(tensors=(tensor1, tensor2, tensor3))
# tensor([[2., 7., 4.],
# [8., 3., 2.],
# [5., 0., 8.],
# [3., 6., 1.],
# [9., 4., 7.],
# [1., 0., 5.]])
tensor1 = torch.tensor([[2.+0.j, 7.+0.j, 4.+0.j],
[8.+0.j, 3.+0.j, 2.+0.j]])
tensor2 = torch.tensor([[5.+0.j, 0.+0.j, 8.+0.j],
[3.+0.j, 6.+0.j, 1.+0.j]])
tensor3 = torch.tensor([[9.+0.j, 4.+0.j, 7.+0.j],
[1.+0.j, 0.+0.j, 5.+0.j]])
torch.vstack(tensors=(tensor1, tensor2, tensor3))
# tensor([[2.+0.j, 7.+0.j, 4.+0.j],
# [8.+0.j, 3.+0.j, 2.+0.j],
# [5.+0.j, 0.+0.j, 8.+0.j],
# [3.+0.j, 6.+0.j, 1.+0.j],
# [9.+0.j, 4.+0.j, 7.+0.j],
# [1.+0.j, 0.+0.j, 5.+0.j]])
tensor1 = torch.tensor([[True, False, True], [False, True, False]])
tensor2 = torch.tensor([[False, True, False], [True, False, True]])
tensor3 = torch.tensor([[True, False, True], [False, True, False]])
torch.vstack(tensors=(tensor1, tensor2, tensor3))
# tensor([[True, False, True],
# [False, True, False],
# [False, True, False],
# [True, False, True],
# [True, False, True],
# [False, True, False]])
tensor1 = torch.tensor([[]])
tensor2 = torch.tensor([])
tensor3 = torch.tensor([[]])
torch.vstack(tensors=(tensor1, tensor2, tensor3))
# tensor([], size=(3, 0))
dstack() can get the 3D or more D depth-wisely stacked tensor of zero or more elements from the one or more 0D or more D tensors of zero or more elements as shown below:
*Memos:
-
dstack()
can be used withtorch
but not with a tensor. - The 1st argument with
torch
istensors
(Required-Type:tuple
orlist
oftensor
ofint
,float
,complex
orbool
). *Basically, the size of tensors must be the same. - There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. -
My post explains
out
argument.
-
import torch
tensor1 = torch.tensor(2)
tensor2 = torch.tensor(7)
tensor3 = torch.tensor(4)
torch.dstack(tensors=(tensor1, tensor2, tensor3))
# tensor([[[2, 7, 4]]])
tensor1 = torch.tensor([2, 7, 4])
tensor2 = torch.tensor([8, 3, 2])
tensor3 = torch.tensor([5, 0, 8])
torch.dstack(tensors=(tensor1, tensor2, tensor3))
# tensor([[[2, 8, 5], [7, 3, 0], [4, 2, 8]]])
tensor1 = torch.tensor([[2, 7, 4], [8, 3, 2]])
tensor2 = torch.tensor([[5, 0, 8], [3, 6, 1]])
tensor3 = torch.tensor([[9, 4, 7], [1, 0, 5]])
torch.dstack(tensors=(tensor1, tensor2, tensor3))
# tensor([[[2, 5, 9], [7, 0, 4], [4, 8, 7]],
# [[8, 3, 1], [3, 6, 0], [2, 1, 5]]])
tensor1 = torch.tensor([[2., 7., 4.], [8., 3., 2.]])
tensor2 = torch.tensor([[5., 0., 8.], [3., 6., 1.]])
tensor3 = torch.tensor([[9., 4., 7.], [1., 0., 5.]])
torch.dstack(tensors=(tensor1, tensor2, tensor3))
# tensor([[[2., 5., 9.], [7., 0., 4.], [4., 8., 7.]],
# [[8., 3., 1.], [3., 6., 0.], [2., 1., 5.]]])
tensor1 = torch.tensor([[2.+0.j, 7.+0.j, 4.+0.j],
[8.+0.j, 3.+0.j, 2.+0.j]])
tensor2 = torch.tensor([[5.+0.j, 0.+0.j, 8.+0.j],
[3.+0.j, 6.+0.j, 1.+0.j]])
tensor3 = torch.tensor([[9.+0.j, 4.+0.j, 7.+0.j],
[1.+0.j, 0.+0.j, 5.+0.j]])
torch.dstack(tensors=(tensor1, tensor2, tensor3))
# tensor([[[2.+0.j, 5.+0.j, 9.+0.j],
# [7.+0.j, 0.+0.j, 4.+0.j],
# [4.+0.j, 8.+0.j, 7.+0.j]],
# [[8.+0.j, 3.+0.j, 1.+0.j],
# [3.+0.j, 6.+0.j, 0.+0.j],
# [2.+0.j, 1.+0.j, 5.+0.j]]])
tensor1 = torch.tensor([[True, False, True], [False, True, False]])
tensor2 = torch.tensor([[False, True, False], [True, False, True]])
tensor3 = torch.tensor([[True, False, True], [False, True, False]])
torch.dstack(tensors=(tensor1, tensor2, tensor3))
# tensor([[[True, False, True],
# [False, True, False],
# [True, False, True]],
# [[False, True, False],
# [True, False, True],
# [False, True, False]]])
tensor1 = torch.tensor([[]])
tensor2 = torch.tensor([])
tensor3 = torch.tensor([[]])
torch.dstack(tensors=(tensor1, tensor2, tensor3))
# tensor([], size=(1, 0, 3))
Top comments (0)