DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

stack in PyTorch

Buy Me a Coffee

*Memos:

stack() can get the 1D or more D stacked tensor of zero or more elements from the one or more 0D or more D tensors of zero or more elements as shown below:

*Memos:

  • stack() can be used with torch but not with a tensor.
  • The 1st argument with torch is tensors(Required-Type:tuple or list of tensor of int, float, complex or bool). *The size of tensors must be the same.
  • The 2nd argument with torch is dim(Optional-Default:0-Type:int).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
  • tensors+1D tensor is returned.
import torch

tensor1 = torch.tensor(2)
tensor2 = torch.tensor(7)
tensor3 = torch.tensor(4)

torch.stack(tensors=(tensor1, tensor2, tensor3))
torch.stack(tensors=(tensor1, tensor2, tensor3), dim=0)
torch.stack(tensors=(tensor1, tensor2, tensor3), dim=-1)
# tensor([2, 7, 4])

tensor1 = torch.tensor([2, 7, 4])
tensor2 = torch.tensor([8, 3, 2])
tensor3 = torch.tensor([5, 0, 8])

torch.stack(tensors=(tensor1, tensor2, tensor3))
torch.stack(tensors=(tensor1, tensor2, tensor3), dim=0)
torch.stack(tensors=(tensor1, tensor2, tensor3), dim=-2)
# tensor([[2, 7, 4], [8, 3, 2], [5, 0, 8]])

torch.stack(tensors=(tensor1, tensor2, tensor3), dim=1)
torch.stack(tensors=(tensor1, tensor2, tensor3), dim=-1)
# tensor([[2, 8, 5], [7, 3, 0], [4, 2, 8]])

tensor1 = torch.tensor([[2, 7, 4], [8, 3, 2]])
tensor2 = torch.tensor([[5, 0, 8], [3, 6, 1]])
tensor3 = torch.tensor([[9, 4, 7], [1, 0, 5]])

torch.stack(tensors=(tensor1, tensor2, tensor3))
torch.stack(tensors=(tensor1, tensor2, tensor3), dim=0)
torch.stack(tensors=(tensor1, tensor2, tensor3), dim=-3)
# tensor([[[2, 7, 4], [8, 3, 2]],
#         [[5, 0, 8], [3, 6, 1]],
#         [[9, 4, 7], [1, 0, 5]]])

torch.stack(tensors=(tensor1, tensor2, tensor3), dim=1)
torch.stack(tensors=(tensor1, tensor2, tensor3), dim=-2)
# tensor([[[2, 7, 4], [5, 0, 8], [9, 4, 7]],
#         [[8, 3, 2], [3, 6, 1], [1, 0, 5]]])

torch.stack(tensors=(tensor1, tensor2, tensor3), dim=-1)
torch.stack(tensors=(tensor1, tensor2, tensor3), dim=2)
# tensor([[[2, 5, 9], [7, 0, 4], [4, 8, 7]],
#         [[8, 3, 1], [3, 6, 0], [2, 1, 5]]])

tensor1 = torch.tensor([[2., 7., 4.], [8., 3., 2.]])
tensor2 = torch.tensor([[5., 0., 8.], [3., 6., 1.]])
tensor3 = torch.tensor([[9., 4., 7.], [1., 0., 5.]])

torch.stack(tensors=(tensor1, tensor2, tensor3))
# tensor([[[2., 7., 4.], [8., 3., 2.]],
#         [[5., 0., 8.], [3., 6., 1.]],
#         [[9., 4., 7.], [1., 0., 5.]]])

tensor1 = torch.tensor([[2.+0.j, 7.+0.j, 4.+0.j],
                        [8.+0.j, 3.+0.j, 2.+0.j]])
tensor2 = torch.tensor([[5.+0.j, 0.+0.j, 8.+0.j],
                        [3.+0.j, 6.+0.j, 1.+0.j]])
tensor3 = torch.tensor([[9.+0.j, 4.+0.j, 7.+0.j],
                        [1.+0.j, 0.+0.j, 5.+0.j]])
torch.stack(tensors=(tensor1, tensor2, tensor3))
# tensor([[[2.+0.j, 7.+0.j, 4.+0.j],
#          [8.+0.j, 3.+0.j, 2.+0.j]],
#         [[5.+0.j, 0.+0.j, 8.+0.j],
#          [3.+0.j, 6.+0.j, 1.+0.j]],
#         [[9.+0.j, 4.+0.j, 7.+0.j],
#          [1.+0.j, 0.+0.j, 5.+0.j]]])

tensor1 = torch.tensor([[True, False, True], [False, True, False]])
tensor2 = torch.tensor([[False, True, False], [True, False, True]])
tensor3 = torch.tensor([[True, False, True], [False, True, False]])

torch.stack(tensors=(tensor1, tensor2, tensor3))
# tensor([[[True, False, True], [False, True, False]],
#         [[False, True, False], [True, False, True]],
#         [[True, False, True], [False, True, False]]])
Enter fullscreen mode Exit fullscreen mode

Heroku

Simplify your DevOps and maximize your time.

Since 2007, Heroku has been the go-to platform for developers as it monitors uptime, performance, and infrastructure concerns, allowing you to focus on writing code.

Learn More

Top comments (0)

Heroku

This site is powered by Heroku

Heroku was created by developers, for developers. Get started today and find out why Heroku has been the platform of choice for brands like DEV for over a decade.

Sign Up