DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

MNIST in PyTorch

Buy Me a Coffee

*Memos:

MNIST() can use MNIST dataset as shown below:

*Memos:

  • The 1st argument is root(Required-Type:str or pathlib.Path). *An absolute or relative path is possible.
  • The 2nd argument is train(Optional-Default:True-Type:bool). *If it's True, train data(60,000 images) is used while if it's False, test data(10,000 images) is used.
  • The 3rd argument is transform(Optional-Default:None-Type:callable).
  • The 4th argument is target_transform(Optional-Default:None-Type:callable).
  • The 5th argument is download(Optional-Default:False-Type:bool): *Memos:
    • If it's True, the dataset is downloaded from the internet and extracted(unzipped) to root.
    • If it's True and the dataset is already downloaded, it's extracted.
    • If it's True and the dataset is already downloaded and extracted, nothing happens.
    • It should be False if the dataset is already downloaded and extracted because it's faster.
    • You can manually download and extract the dataset(train-images-idx3-ubyte.gz and train-labels-idx1-ubyte.gz, t10k-images-idx3-ubyte.gz and t10k-labels-idx1-ubyte.gz) from here to data/MNIST/raw/.
from torchvision.datasets import MNIST

train_data = MNIST(
    root="data"
)

train_data = MNIST(
    root="data",
    train=True,
    transform=None,
    target_transform=None,
    download=False
)

test_data = MNIST(
    root="data",
    train=False
)

len(train_data), len(test_data)
# (60000, 10000)

train_data
# Dataset MNIST
#     Number of datapoints: 60000
#     Root location: data
#     Split: Train

train_data.root
# 'data'

train_data.train
# True

print(train_data.transform)
# None

print(train_data.target_transform)
# None

train_data.download
# <bound method MNIST.download of Dataset MNIST
#     Number of datapoints: 60000
#     Root location: data
#     Split: Train>

len(train_data.classes), train_data.classes
# (10,
#  ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
#   '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine'])

train_data[0]
# (<PIL.Image.Image image mode=L size=28x28>, 5)

train_data[1]
# (<PIL.Image.Image image mode=L size=28x28>, 0)

train_data[2]
# (<PIL.Image.Image image mode=L size=28x28>, 4)

train_data[3]
# (<PIL.Image.Image image mode=L size=28x28>, 1)

train_data[4]
# (<PIL.Image.Image image mode=L size=28x28>, 9)

import matplotlib.pyplot as plt

def show_images(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    for i, (im, lab) in zip(range(1, 11), data):
        plt.subplot(2, 5, i)
        plt.imshow(X=im)
        plt.title(label=lab)
    plt.tight_layout()
    plt.show()

show_images(data=train_data, main_title="train_data")
show_images(data=test_data, main_title="test_data")
Enter fullscreen mode Exit fullscreen mode

Image description

Image description

Top comments (0)