DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on

Flatten in PyTorch

Buy Me a Coffee

*Memos:

Flatten() can remove zero or more dimensions by selecting dimensions from the 0D or more D tensor of zero or more elements, getting the 1D or more D tensor of zero or more elements as shown below:

*Memos:

  • The 1st argument for initialization is start_dim(Optional-Default:1-Type:int).
  • The 2nd argument for initialization is end_dim(Optional-Default:-1-Type:int).
  • The 1st argument is input(Required-Type:tensor of int, float, complex or bool).
  • Flatten() can change a 0D tensor to a 1D tensor.
  • Flatten() does nothing for a 1D tensor.
  • The difference between Flatten() and flatten() is:
    • The default value of start_dim for Flatten() is 1 while the default value of start_dim for flatten() is 0.
    • Basically, Flatten() is used to define a model while flatten() is not used to define a model.
import torch
from torch import nn

flatten = nn.Flatten()
flatten
# Flatten(start_dim=1, end_dim=-1)

flatten.start_dim
# 1

flatten.end_dim
# -1

my_tensor = torch.tensor(7)

flatten = nn.Flatten(start_dim=0, end_dim=0)
flatten = nn.Flatten(start_dim=0, end_dim=-1)
flatten = nn.Flatten(start_dim=-1, end_dim=0)
flatten = nn.Flatten(start_dim=-1, end_dim=-1)
flatten(input=my_tensor)
# tensor([7])

my_tensor = torch.tensor([7, 1, -8, 3, -6, 0])

flatten = nn.Flatten(start_dim=0, end_dim=0)
flatten = nn.Flatten(start_dim=0, end_dim=-1)
flatten = nn.Flatten(start_dim=-1, end_dim=0)
flatten = nn.Flatten(start_dim=-1, end_dim=-1)
flatten(input=my_tensor)
# tensor([7, 1, -8, 3, -6, 0])

my_tensor = torch.tensor([[7, 1, -8], [3, -6, 0]])

flatten = nn.Flatten(start_dim=0, end_dim=1)
flatten = nn.Flatten(start_dim=0, end_dim=-1)
flatten = nn.Flatten(start_dim=-2, end_dim=1)
flatten = nn.Flatten(start_dim=-2, end_dim=-1)
flatten(input=my_tensor)
# tensor([7, 1, -8, 3, -6, 0])

flatten = nn.Flatten()
flatten = nn.Flatten(start_dim=0, end_dim=0)
flatten = nn.Flatten(start_dim=-1, end_dim=-1)
flatten = nn.Flatten(start_dim=0, end_dim=-2)
flatten = nn.Flatten(start_dim=1, end_dim=1)
flatten = nn.Flatten(start_dim=1, end_dim=-1)
flatten = nn.Flatten(start_dim=-1, end_dim=1)
flatten = nn.Flatten(start_dim=-1, end_dim=-1)
flatten = nn.Flatten(start_dim=-2, end_dim=0)
flatten = nn.Flatten(start_dim=-2, end_dim=-2)
flatten(input=my_tensor)
# tensor([[7, 1, -8], [3, -6, 0]])

my_tensor = torch.tensor([[[7], [1], [-8]], [[3], [-6], [0]]])

flatten = nn.Flatten(start_dim=0, end_dim=2)
flatten = nn.Flatten(start_dim=0, end_dim=-1)
flatten = nn.Flatten(start_dim=-3, end_dim=2)
flatten = nn.Flatten(start_dim=-3, end_dim=-1)
flatten(input=my_tensor)
# tensor([7, 1, -8, 3, -6, 0])

flatten = nn.Flatten(start_dim=0, end_dim=0)
flatten = nn.Flatten(start_dim=0, end_dim=-3)
flatten = nn.Flatten(start_dim=1, end_dim=1)
flatten = nn.Flatten(start_dim=1, end_dim=-2)
flatten = nn.Flatten(start_dim=2, end_dim=2)
flatten = nn.Flatten(start_dim=2, end_dim=-1)
flatten = nn.Flatten(start_dim=-1, end_dim=2)
flatten = nn.Flatten(start_dim=-1, end_dim=-1)
flatten = nn.Flatten(start_dim=-2, end_dim=1)
flatten = nn.Flatten(start_dim=-2, end_dim=-2)
flatten = nn.Flatten(start_dim=-3, end_dim=0)
flatten = nn.Flatten(start_dim=-3, end_dim=-3)
flatten(input=my_tensor)
# tensor([[[7], [1], [-8]], [[3], [-6], [0]]])

flatten = nn.Flatten(start_dim=0, end_dim=1)
flatten = nn.Flatten(start_dim=0, end_dim=-2)
flatten = nn.Flatten(start_dim=-3, end_dim=1)
flatten = nn.Flatten(start_dim=-3, end_dim=-2)
flatten(input=my_tensor)
# tensor([[7], [1], [-8], [3], [-6], [0]])

flatten = nn.Flatten()
flatten = nn.Flatten(start_dim=1, end_dim=2)
flatten = nn.Flatten(start_dim=1, end_dim=-1)
flatten = nn.Flatten(start_dim=-2, end_dim=2)
flatten = nn.Flatten(start_dim=-2, end_dim=-1)
flatten(input=my_tensor)
# tensor([[7, 1, -8], [3, -6, 0]])

my_tensor = torch.tensor([[[7.], [1.], [-8.]], [[3.], [-6.], [0.]]])

flatten = nn.Flatten()
flatten(input=my_tensor)
# tensor([[7., 1., -8.], [3., -6., 0.]])

my_tensor = torch.tensor([[[7.+0.j], [1.+0.j], [-8.+0.j]],
                          [[3.+0.j], [-6.+0.j], [0.+0.j]]])
flatten = nn.Flatten()
flatten(input=my_tensor)
# tensor([[7.+0.j, 1.+0.j, -8.+0.j],
#         [3.+0.j, -6.+0.j, 0.+0.j]])

my_tensor = torch.tensor([[[True], [False], [True]],
                          [[False], [True], [False]]])
flatten = nn.Flatten()
flatten(input=my_tensor)
# tensor([[True, False, True],
#         [False, True, False]])
Enter fullscreen mode Exit fullscreen mode

Do your career a big favor. Join DEV. (The website you're on right now)

It takes one minute, it's free, and is worth it for your career.

Get started

Community matters

Top comments (0)

Billboard image

The Next Generation Developer Platform

Coherence is the first Platform-as-a-Service you can control. Unlike "black-box" platforms that are opinionated about the infra you can deploy, Coherence is powered by CNC, the open-source IaC framework, which offers limitless customization.

Learn more

👋 Kindness is contagious

Explore a sea of insights with this enlightening post, highly esteemed within the nurturing DEV Community. Coders of all stripes are invited to participate and contribute to our shared knowledge.

Expressing gratitude with a simple "thank you" can make a big impact. Leave your thanks in the comments!

On DEV, exchanging ideas smooths our way and strengthens our community bonds. Found this useful? A quick note of thanks to the author can mean a lot.

Okay