DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

GaussianBlur in PyTorch (1)

Buy Me a Coffee

*Memos:

GaussianBlur() can randomly blur an image as shown below. *It's about kernel_size argument:

*Memos:

  • The 1st argument for initialization is kernel_size(Required-Type:int or tuple/list(int)): *Memos:
    • It's [height, width].
    • It must be odd 1 <= x.
    • A tuple/list must be the 1D with 1 or 2 elements.
    • A single value(int or tuple/list(int)) means [kernel_size, kernel_size].
  • The 2nd argument for initialization is sigma(Optional-Default:(0.1, 2.0)-Type:int, float or tuple/list(int or float)): *Memos:
    • It's [min, max] so it must be min <= max.
    • It must be 0 < x.
    • A tuple/list must be the 1D with 1 or 2 elements.
    • A single value(int, float or tuple/list(int or float)) means [sigma, sigma].
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 2D or 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import GaussianBlur

gb = GaussianBlur(kernel_size=5)
gb = GaussianBlur(kernel_size=5, sigma=(0.1, 2.0))

gb
# GaussianBlur(kernel_size=(5, 5), sigma=[0.1, 2.0])

gb.kernel_size 
# (5, 5)

gb.sigma
# [0.1, 2.0]

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

ks1_data = OxfordIIITPet( # `ks` is kernel_size.
    root="data",
    transform=GaussianBlur(kernel_size=1)
    # transform=GaussianBlur(kernel_size=[1])
    # transform=GaussianBlur(kernel_size=[1, 1])
)

ks5_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=5)
)

ks11_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=11)
)

ks51_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=51)
)

ks101_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101)
)

ks5_51_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[5, 51])
)

ks51_5_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[51, 5])
)

ks1s01_data = OxfordIIITPet( # `s` is sigma.
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=0.1)
)

ks5s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=5, sigma=0.1)
)

ks11s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=11, sigma=0.1)
)

ks51s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=51, sigma=0.1)
)

ks101s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=0.1)
)

ks5_51s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[5, 51], sigma=0.1)
)

ks51_5s01_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[51, 5], sigma=0.1)
)

ks1s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=1, sigma=50)
)

ks5s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=5, sigma=50)
)

ks11s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=11, sigma=50)
)

ks51s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=51, sigma=50)
)

ks101s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=101, sigma=50)
)

ks5_51s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[5, 51], sigma=50)
)

ks51_5s50_data = OxfordIIITPet(
    root="data",
    transform=GaussianBlur(kernel_size=[51, 5], sigma=50)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks1_data, main_title="ks1_data")
show_images1(data=ks5_data, main_title="ks5_data")
show_images1(data=ks11_data, main_title="ks11_data")
show_images1(data=ks51_data, main_title="ks51_data")
show_images1(data=ks101_data, main_title="ks101_data")
show_images1(data=ks5_51_data, main_title="ks5_51_data")
show_images1(data=ks51_5_data, main_title="ks51_5_data")
print()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks1s01_data, main_title="ks1s01_data")
show_images1(data=ks5s01_data, main_title="ks5s01_data")
show_images1(data=ks11s01_data, main_title="ks11s01_data")
show_images1(data=ks51s01_data, main_title="ks51s01_data")
show_images1(data=ks101s01_data, main_title="ks101s01_data")
show_images1(data=ks5_51s01_data, main_title="ks5_51s01_data")
show_images1(data=ks51_5s01_data, main_title="ks51_5s01_data")
print()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=ks1s50_data, main_title="ks1s50_data")
show_images1(data=ks5s50_data, main_title="ks5s50_data")
show_images1(data=ks11s50_data, main_title="ks11s50_data")
show_images1(data=ks51s50_data, main_title="ks51s50_data")
show_images1(data=ks101s50_data, main_title="ks101s50_data")
show_images1(data=ks5_51s50_data, main_title="ks5_51s50_data")
show_images1(data=ks51_5s50_data, main_title="ks51_5s50_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, ks=None, s=(0.1, 2.0)):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if ks:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            gb = GaussianBlur(kernel_size=ks, sigma=s)
            plt.imshow(X=gb(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks1_data", ks=1)
show_images2(data=origin_data, main_title="ks5_data", ks=5)
show_images2(data=origin_data, main_title="ks11_data", ks=11)
show_images2(data=origin_data, main_title="ks51_data", ks=51)
show_images2(data=origin_data, main_title="ks101_data", ks=101)
show_images2(data=origin_data, main_title="ks5_51data", ks=[5, 51])
show_images2(data=origin_data, main_title="ks51_5_data", ks=[51, 5])
print()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks1s01_data", ks=1, s=0.1)
show_images2(data=origin_data, main_title="ks5s01_data", ks=5, s=0.1)
show_images2(data=origin_data, main_title="ks11s01_data", ks=11, s=0.1)
show_images2(data=origin_data, main_title="ks51s01_data", ks=51, s=0.1)
show_images2(data=origin_data, main_title="ks101s01_data", ks=101, s=0.1)
show_images2(data=origin_data, main_title="ks5_51s01data", ks=[5, 51], s=0.1)
show_images2(data=origin_data, main_title="ks51_5s01_data", ks=[51, 5], s=0.1)
print()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="ks1s50_data", ks=1, s=50)
show_images2(data=origin_data, main_title="ks5s50_data", ks=5, s=50)
show_images2(data=origin_data, main_title="ks11s50_data", ks=11, s=50)
show_images2(data=origin_data, main_title="ks51s50_data", ks=51, s=50)
show_images2(data=origin_data, main_title="ks101s50_data", ks=101, s=50)
show_images2(data=origin_data, main_title="ks5_51s50data", ks=[5, 51], s=50)
show_images2(data=origin_data, main_title="ks51_5s50_data", ks=[51, 5], s=50)
Enter fullscreen mode Exit fullscreen mode

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Heroku

Build apps, not infrastructure.

Dealing with servers, hardware, and infrastructure can take up your valuable time. Discover the benefits of Heroku, the PaaS of choice for developers since 2007.

Visit Site

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

AWS Security LIVE!

Hosted by security experts, AWS Security LIVE! showcases AWS Partners tackling real-world security challenges. Join live and get your security questions answered.

Tune in to the full event

DEV is partnering to bring live events to the community. Join us or dismiss this billboard if you're not interested. ❤️