DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

mean and nanmean in PyTorch

Buy Me a Coffee

*Memos:

mean() can get the 0 or more D tensor of zero or more mean(average) elements, normally treating zero or more NaNs(Not a Numbers) from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • mean() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of float or complex).
  • The 2nd argument with torch or the 1st argument with a tensor is dim(Optional-Type:int, tuple of int or list of int).
  • The 3rd argument with torch or the 2nd argument with a tensor is keepdim(Optional-Default:False-Type:bool): *Memos:
    • It must be used with dim.
    • My post explains keepdim argument.
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
    • If it's None, it's inferred from input.
    • dtype= must be used.
    • My post explains dtype argument.
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • It must be used with dim.
    • out= must be used.
    • My post explains out argument.
  • Normally, the arithmetic operation with a NaN results in a NaN.
  • The empty 1D or more D input tensor or tensor without dim or with the deepest dim gets a NaN.
import torch

my_tensor = torch.tensor([5., 4., 7., 7.])

torch.mean(input=my_tensor)
my_tensor.mean()
torch.mean(input=my_tensor, dim=0)
torch.mean(input=my_tensor, dim=-1)
torch.mean(input=my_tensor, dim=(0,))
torch.mean(input=my_tensor, dim=(-1,))
# tensor(5.7500)

my_tensor = torch.tensor([5., 4., torch.nan, 7., 7.])

torch.mean(input=my_tensor)
# tensor(nan)

my_tensor = torch.tensor([[5., 4., 7., 7.],
                          [6., 5., 3., 5.],
                          [3., 8., 9., 3.]])
torch.mean(input=my_tensor)
torch.mean(input=my_tensor, dim=(0, 1))
torch.mean(input=my_tensor, dim=(0, -1))
torch.mean(input=my_tensor, dim=(1, 0))
torch.mean(input=my_tensor, dim=(1, -2))
torch.mean(input=my_tensor, dim=(-1, 0))
torch.mean(input=my_tensor, dim=(-1, -2))
torch.mean(input=my_tensor, dim=(-2, 1))
torch.mean(input=my_tensor, dim=(-2, -1))
# tensor(5.4167)

torch.mean(input=my_tensor, dim=0)
torch.mean(input=my_tensor, dim=(0,))
torch.mean(input=my_tensor, dim=-2)
torch.mean(input=my_tensor, dim=(-2,))
# tensor([4.6667, 5.6667, 6.3333, 5.0000])

torch.mean(input=my_tensor, dim=1)
torch.mean(input=my_tensor, dim=(1,))
torch.mean(input=my_tensor, dim=-1)
torch.mean(input=my_tensor, dim=(-1,))
# tensor([5.7500, 4.7500, 5.7500])

my_tensor = torch.tensor([[torch.nan, 5., 4., torch.nan, 7., 7., torch.nan],
                          [6., torch.nan, 5., torch.nan, 3., 5., torch.nan],
                          [3., 8., torch.nan, torch.nan, 9., 3., torch.nan]])
torch.mean(input=my_tensor)
# tensor(nan)

torch.mean(input=my_tensor, dim=0)
# tensor([nan, nan, nan, nan, 6.3333, 5.0000, nan])

torch.mean(input=my_tensor, dim=1)
# tensor([nan, nan, nan])

my_tensor = torch.tensor([[5.+0.j, 4.+0.j, 7.+0.j, 7.+0.j],
                          [6.+0.j, 5.+0.j, 3.+0.j, 5.+0.j],
                          [3.+0.j, 8.+0.j, 9.+0.j, 3.+0.j]])
torch.mean(input=my_tensor)
# tensor(5.4167+0.j)

my_tensor = torch.tensor([[5.+0.j, 4.+0.j, torch.nan, 7.+0.j, 7.+0.j],
                          [6.+0.j, torch.nan, 5.+0.j, 3.+0.j, 5.+0.j],
                          [3.+0.j, 8.+0.j, 9.+0.j, torch.nan, 3.+0.j]])
torch.mean(input=my_tensor)
# tensor(nan+nanj)

my_tensor = torch.tensor([])

torch.mean(input=my_tensor)
# tensor(nan)
Enter fullscreen mode Exit fullscreen mode

nanmean() can get the 0 or more D tensor of zero or more mean(average) elements, ignoring zero or more NaNs(Not a Numbers) only if they are with non-NaNs from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • nanmean() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of float).
  • The 2nd argument with torch or the 1st argument with a tensor is dim(Optional-Type:int, tuple of int or list of int).
  • The 3rd argument with torch or the 2nd argument with a tensor is keepdim(Optional-Default:False-Type:bool): *Memos:
    • It must be used with dim.
    • My post explains keepdim argument.
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
    • If it's None, it's inferred from input.
    • dtype= must be used.
    • My post explains dtype argument.
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • It must be used with dim.
    • out= must be used.
    • My post explains out argument.
  • Normally, the arithmetic operation with a NaN results in a NaN.
  • The empty 1D or more D input tensor or tensor without dim or with the deepest dim gets a NaN.
import torch

my_tensor = torch.tensor(torch.nan)
my_tensor = torch.tensor([torch.nan, torch.nan])
my_tensor = torch.tensor([torch.nan, torch.nan, torch.nan])

torch.nanmean(input=my_tensor)
my_tensor.nanmean()
torch.nanmean(input=my_tensor, dim=0)
torch.nanmean(input=my_tensor, dim=-1)
torch.nanmean(input=my_tensor, dim=(0,))
torch.nanmean(input=my_tensor, dim=(-1,))
# tensor(nan)

my_tensor = torch.tensor([5., 4., 7., 7.])
my_tensor = torch.tensor([5., 4., torch.nan, 7., 7.])
my_tensor = torch.tensor([5., 4., 7., 7., torch.nan])

torch.nanmean(input=my_tensor)
torch.nanmean(input=my_tensor, dim=0)
torch.nanmean(input=my_tensor, dim=-1)
torch.nanmean(input=my_tensor, dim=(0,))
torch.nanmean(input=my_tensor, dim=(-1,))
# tensor(5.7500)

my_tensor = torch.tensor([[torch.nan, 5., 4., torch.nan, 7., 7., torch.nan],
                          [6., torch.nan, 5., torch.nan, 3., 5., torch.nan],
                          [3., 8., torch.nan, torch.nan, 9., 3., torch.nan]])
torch.nanmean(input=my_tensor)
torch.nanmean(input=my_tensor, dim=(0, 1))
torch.nanmean(input=my_tensor, dim=(0, -1))
torch.nanmean(input=my_tensor, dim=(1, 0))
torch.nanmean(input=my_tensor, dim=(1, -2))
torch.nanmean(input=my_tensor, dim=(-1, 0))
torch.nanmean(input=my_tensor, dim=(-1, -2))
torch.nanmean(input=my_tensor, dim=(-2, 1))
torch.nanmean(input=my_tensor, dim=(-2, -1))
# tensor(5.4167)

torch.nanmean(input=my_tensor, dim=0)
torch.nanmean(input=my_tensor, dim=(0,))
torch.nanmean(input=my_tensor, dim=-2)
torch.nanmean(input=my_tensor, dim=(-2,))
# tensor([4.5000, 6.5000, 4.5000, nan, 6.3333, 5.0000, nan])

torch.nanmean(input=my_tensor, dim=1)
torch.nanmean(input=my_tensor, dim=(1,))
torch.nanmean(input=my_tensor, dim=-1)
torch.nanmean(input=my_tensor, dim=(-1,))
# tensor([5.7500, 4.7500, 5.7500])

my_tensor = torch.tensor([])

torch.nanmean(input=my_tensor)
# tensor(nan)
Enter fullscreen mode Exit fullscreen mode

Heroku

Built for developers, by developers.

Whether you're building a simple prototype or a business-critical product, Heroku's fully-managed platform gives you the simplest path to delivering apps quickly — using the tools and languages you already love!

Learn More

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

👋 Kindness is contagious

Explore a trove of insights in this engaging article, celebrated within our welcoming DEV Community. Developers from every background are invited to join and enhance our shared wisdom.

A genuine "thank you" can truly uplift someone’s day. Feel free to express your gratitude in the comments below!

On DEV, our collective exchange of knowledge lightens the road ahead and strengthens our community bonds. Found something valuable here? A small thank you to the author can make a big difference.

Okay