DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

sum and nansum in PyTorch

Buy Me a Coffee

*Memos:

sum() can get the 0D or more D tensor of zero or more sum's elements, normally treating one or more NaNs(Not a Numbers) from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • sum() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is dim(Optional-Type:int, tuple of int or list of int).
  • The 3rd argument with torch or the 2nd argument with a tensor is keepdim(Optional-Default:False-Type:bool): *Memos:
    • keepdim= must be used with dim=.
    • My post explains keepdim argument.
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
    • If it's None, it's inferred from input or a tensor.
    • dtype= must be used.
    • My post explains dtype argument.
  • Normally, the arithmetic operation with a NaN results in a NaN.
  • The empty 1D or more D input tensor or tensor without dim or with the deepest dim gets a zero.
import torch

my_tensor = torch.tensor([1, 2, 3, 4])

torch.sum(input=my_tensor)
my_tensor.sum()
torch.sum(input=my_tensor, dim=0)
torch.sum(input=my_tensor, dim=-1)
torch.sum(input=my_tensor, dim=(0,))
torch.sum(input=my_tensor, dim=(-1,))
# tensor(10)

my_tensor = torch.tensor([1, 2, torch.nan, 4])

torch.sum(input=my_tensor)
# tensor(nan)

my_tensor = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]])

torch.sum(input=my_tensor)
torch.sum(input=my_tensor, dim=(0, 1))
torch.sum(input=my_tensor, dim=(0, -1))
torch.sum(input=my_tensor, dim=(1, 0))
torch.sum(input=my_tensor, dim=(1, -2))
torch.sum(input=my_tensor, dim=(-1, 0))
torch.sum(input=my_tensor, dim=(-1, -2))
torch.sum(input=my_tensor, dim=(-2, 1))
torch.sum(input=my_tensor, dim=(-2, -1))
# tensor(36)

torch.sum(input=my_tensor, dim=0)
torch.sum(input=my_tensor, dim=-2)
torch.sum(input=my_tensor, dim=(0,))
torch.sum(input=my_tensor, dim=(-2,))
# tensor([6, 8, 10, 12])

torch.sum(input=my_tensor, dim=1)
torch.sum(input=my_tensor, dim=-1)
torch.sum(input=my_tensor, dim=(1,))
torch.sum(input=my_tensor, dim=(-1,))
# tensor([10, 26])

my_tensor = torch.tensor([[1, 2, torch.nan, 4], [torch.nan, 6, 7, 8]])

torch.sum(input=my_tensor)
# tensor(nan)

torch.sum(input=my_tensor, dim=0)
# tensor([nan, 8., nan, 12.])

torch.sum(input=my_tensor, dim=1)
# tensor([nan, nan])

my_tensor = torch.tensor([[1., 2., 3., 4.], [5., 6., 7., 8.]])

torch.sum(input=my_tensor)
# tensor(36.)

my_tensor = torch.tensor([[1, 2, torch.nan, 4], [torch.nan, 6, 7, 8]])

torch.sum(input=my_tensor)
# tensor(nan)

my_tensor = torch.tensor([[1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j],
                          [5.+0.j, 6.+0.j, 7.+0.j, 8.+0.j]])
torch.sum(input=my_tensor)
# tensor(36.+0.j)

my_tensor = torch.tensor([[1.+0.j, 2.+0.j, torch.nan, 4.+0.j],
                          [torch.nan, 6.+0.j, 7.+0.j, 8.+0.j]])
torch.sum(input=my_tensor)
# tensor(nan+0.j)

my_tensor = torch.tensor([[True, False, True, False],
                          [False, True, False, True]])
torch.sum(input=my_tensor)
# tensor(4)

my_tensor = torch.tensor([])

torch.sum(input=my_tensor)
# tensor(0.)
Enter fullscreen mode Exit fullscreen mode

nansum() can get the 0D or more D tensor of zero or more sum's elements, treating nan as zero from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • nansum() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is dim(Optional-Type:int, tuple of int or list of int).
  • The 3rd argument with torch or the 2nd argument with a tensor is keepdim(Optional-Default:False-Type:bool): *Memos:
    • keepdim= must be used with dim=.
    • My post explains keepdim argument.
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
    • If it's None, it's inferred from input or a tensor.
    • dtype= must be used.
    • My post explains dtype argument.
  • Normally, the arithmetic operation with a NaN results in a NaN.
  • The empty 1D or more D input tensor or tensor without dim or with the deepest dim gets a zero.
import torch

my_tensor = torch.tensor([1., 2., torch.nan, 4.])

torch.nansum(input=my_tensor)
my_tensor.nansum()
torch.nansum(input=my_tensor, dim=0)
torch.nansum(input=my_tensor, dim=-1)
torch.nansum(input=my_tensor, dim=(0,))
torch.nansum(input=my_tensor, dim=(-1,))
# tensor(7.)

my_tensor = torch.tensor([[1., 2., torch.nan, 4.],
                          [torch.nan, 6., 7., 8.]])
torch.nansum(input=my_tensor)
torch.nansum(input=my_tensor, dim=(0, 1))
torch.nansum(input=my_tensor, dim=(0, -1))
torch.nansum(input=my_tensor, dim=(1, 0))
torch.nansum(input=my_tensor, dim=(1, -2))
torch.nansum(input=my_tensor, dim=(-1, 0))
torch.nansum(input=my_tensor, dim=(-1, -2))
torch.nansum(input=my_tensor, dim=(-2, 1))
torch.nansum(input=my_tensor, dim=(-2, -1))
# tensor(28.)

torch.nansum(input=my_tensor, dim=0)
torch.nansum(input=my_tensor, dim=-2)
torch.nansum(input=my_tensor, dim=(0,))
torch.nansum(input=my_tensor, dim=(-2,))
# tensor([1., 8., 7., 12.])

torch.nansum(input=my_tensor, dim=1)
torch.nansum(input=my_tensor, dim=-1)
torch.nansum(input=my_tensor, dim=(1,))
torch.nansum(input=my_tensor, dim=(-1,))
# tensor([7., 21.])

my_tensor = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]])

torch.nansum(input=my_tensor)
# tensor(36)

my_tensor = torch.tensor([[True, False, True, False],
                          [False, True, False, True]])
torch.nansum(input=my_tensor)
# tensor(4)

my_tensor = torch.tensor([])

torch.nansum(input=my_tensor)
# tensor(0.)
Enter fullscreen mode Exit fullscreen mode

Quadratic AI

Quadratic AI – The Spreadsheet with AI, Code, and Connections

  • AI-Powered Insights: Ask questions in plain English and get instant visualizations
  • Multi-Language Support: Seamlessly switch between Python, SQL, and JavaScript in one workspace
  • Zero Setup Required: Connect to databases or drag-and-drop files straight from your browser
  • Live Collaboration: Work together in real-time, no matter where your team is located
  • Beyond Formulas: Tackle complex analysis that traditional spreadsheets can't handle

Get started for free.

Watch The Demo 📊✨

Top comments (0)

AWS Security LIVE!

Join us for AWS Security LIVE!

Discover the future of cloud security. Tune in live for trends, tips, and solutions from AWS and AWS Partners.

Learn More

👋 Kindness is contagious

Please consider leaving a ❤️ or a friendly comment if you found this post helpful!

Okay