DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

ones and ones_like in PyTorch

Buy Me a Coffee

*My post explains zeros() and zeros_like().

ones() can create the 1D or more D tensor of zero or more 1., 1, 1.+0.j or True as shown below:

*Memos:

  • ones() can be used with torch but not with a tensor.
  • The 1st or more arguments with torch are size(Required-Type:int, tuple of int, list of int or size()).
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
  • There is device argument with torch(Optional-Default:None-Type:str, int or device()): *Memos:
  • There is requires_grad argument with torch(Optional-Default:False-Type:bool): *Memos:
    • requires_grad= must be used.
    • My post explains requires_grad argument.
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
import torch

torch.ones(size=())
torch.ones(size=torch.tensor(8).size())
# tensor(1.)

torch.ones(size=(0,))
torch.ones(0)
torch.ones(size=torch.tensor([]).size())
# tensor([])

torch.ones(size=(3,))
torch.ones(3)
torch.ones(size=torch.tensor([8, 3, 6]).size())
# tensor([1., 1., 1.])

torch.ones(size=(3, 2))
torch.ones(3, 2)
torch.ones(size=torch.tensor([[8, 3], [6, 0], [2, 9]]).size())
# tensor([[1., 1.], [1., 1.], [1., 1.]])

torch.ones(size=(3, 2, 4))
torch.ones(3, 2, 4)
# tensor([[[1., 1., 1., 1.], [1., 1., 1., 1.]],
#         [[1., 1., 1., 1.], [1., 1., 1., 1.]],
#         [[1., 1., 1., 1.], [1., 1., 1., 1.]]])

torch.ones(size=(3, 2, 4), dtype=torch.int64)
torch.ones(3, 2, 4, dtype=torch.int64)
# tensor([[[1, 1, 1, 1], [1, 1, 1, 1]],
#         [[1, 1, 1, 1], [1, 1, 1, 1]],
#         [[1, 1, 1, 1], [1, 1, 1, 1]]])

torch.ones(size=(3, 2, 4), dtype=torch.complex64)
torch.ones(3, 2, 4, dtype=torch.complex64)
# tensor([[[1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j],
#          [1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]],
#         [[1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j],
#          [1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]],
#         [[1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j],
#          [1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]]])

torch.ones(size=(3, 2, 4), dtype=torch.bool)
torch.ones(3, 2, 4, dtype=torch.bool)
# tensor([[[True, True, True, True],
#          [True, True, True, True]],
#         [[True, True, True, True],
#          [True, True, True, True]],
#         [[True, True, True, True],
#          [True, True, True, True]]])
Enter fullscreen mode Exit fullscreen mode

ones_like() can replace the zero or more integers, floating-point numbers, integers, complex numbers or boolean values of a 0D or more D tensor with zero or more 1., 1, 1.+0.j or True as shown below:

*Memos:

  • ones_like() can be used with torch but not with a tensor.
  • The 1st argument with torch is input(Required-Type:tensor of int, float, complex or bool).
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
    • If it's None, it's inferred from input.
    • dtype= must be used.
    • My post explains dtype argument.
  • There is device argument with torch(Optional-Default:None-Type:str, int or device()): *Memos:
    • If it's None, it's inferred from input.
    • device= must be used.
    • My post explains device argument.
  • There is requires_grad argument with torch(Optional-Default:False-Type:bool): *Memos:
    • requires_grad= must be used.
    • My post explains requires_grad argument.
import torch

my_tensor = torch.tensor(7.)

torch.ones_like(input=my_tensor)
# tensor(1.)

my_tensor = torch.tensor([7., 4., 5.])

torch.ones_like(input=my_tensor)
# tensor([1., 1., 1.])

my_tensor = torch.tensor([[7., 4., 5.], [2., 8., 3.]])

torch.ones_like(input=my_tensor)
# tensor([[1., 1., 1.], [1., 1., 1.]])

my_tensor = torch.tensor([[[7., 4., 5.], [2., 8., 3.]],
                          [[6., 0., 1.], [5., 9., 4.]]])
torch.ones_like(input=my_tensor)
# tensor([[[1., 1., 1.], [1., 1., 1.]],
#         [[1., 1., 1.], [1., 1., 1.]]])

my_tensor = torch.tensor([[[7, 4, 5], [2, 8, 3]],
                          [[6, 0, 1], [5, 9, 4]]])
torch.ones_like(input=my_tensor)
# tensor([[[1, 1, 1], [1, 1, 1]],
#         [[1, 1, 1], [1, 1, 1]]])

my_tensor = torch.tensor([[[7.+4.j, 4.+2.j, 5.+3.j],
                           [2.+5.j, 8.+1.j, 3.+9.j]],
                          [[6.+9.j, 0.+3.j, 1.+8.j],
                           [5.+3.j, 9.+4.j, 4.+6.j]]])
torch.ones_like(input=my_tensor)
# tensor([[[1.+0.j, 1.+0.j, 1.+0.j],
#          [1.+0.j, 1.+0.j, 1.+0.j]],
#         [[1.+0.j, 1.+0.j, 1.+0.j],
#          [1.+0.j, 1.+0.j, 1.+0.j]]])

my_tensor = torch.tensor([[[True, False, True], [False, True, False]], 
                          [[False, True, False], [True, False, True]]])
torch.ones_like(input=my_tensor)
# tensor([[[True, True, True], [True, True, True]],
#         [[True, True, True], [True, True, True]]])
Enter fullscreen mode Exit fullscreen mode

Heroku

Simplify your DevOps and maximize your time.

Since 2007, Heroku has been the go-to platform for developers as it monitors uptime, performance, and infrastructure concerns, allowing you to focus on writing code.

Learn More

Top comments (0)

Billboard image

The Next Generation Developer Platform

Coherence is the first Platform-as-a-Service you can control. Unlike "black-box" platforms that are opinionated about the infra you can deploy, Coherence is powered by CNC, the open-source IaC framework, which offers limitless customization.

Learn more

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay