DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

1

permute in PyTorch

Buy Me a Coffee

*Memos:

permute() can get the view of the 1D or more D tensor of zero or more elements with its dimensions permuted without losing data from the 1D or more D tensor of zero or more elements as shown below:

*Memos:

  • permute() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch(Type:tuple of int or list of int) or the 1st or more arguments with a tensor(Type:int, tuple of int or list of int) are dims(Required). *Each number must be unique.
  • You must set the same number of dimensions as the input tensor.
import torch

my_tensor = torch.tensor([[[0, 1, 2], [3, 4, 5]],
                          [[6, 7, 8], [9, 10, 11]],
                          [[12, 13, 14], [15, 16, 17]],
                          [[18, 19, 20], [21, 22, 23]]])
torch.permute(input=my_tensor, dims=(0, 1, 2))
torch.permute(input=my_tensor, dims=(-3, -2, -1))
my_tensor.permute(dims=(0, 1, 2))
my_tensor.permute(dims=(-3, -2, -1))
my_tensor.permute(0, 1, 2)
my_tensor.permute(-3, -2, -1)
# tensor([[[0, 1, 2], [3, 4, 5]],
#         [[6, 7, 8], [9, 10, 11]],
#         [[12, 13, 14], [15, 16, 17]],
#         [[18, 19, 20], [21, 22, 23]]])

torch.permute(input=my_tensor, dims=(2, 0, 1))
torch.permute(input=my_tensor, dims=(-1, -3, -2))
# tensor([[[0, 3], [6, 9], [12, 15], [18, 21]],
#         [[1, 4], [7, 10], [13, 16], [19, 22]],
#         [[2, 5], [8, 11], [14, 17], [20, 23]]])

torch.permute(input=my_tensor, dims=(1, 2, 0))
torch.permute(input=my_tensor, dims=(-2, -1, -3))
# tensor([[[0, 6, 12, 18], [1, 7, 13, 19], [2, 8, 14, 20]],
#         [[3, 9, 15, 21], [4, 10, 16, 22], [5, 11, 17, 23]]])

torch.permute(input=my_tensor, dims=(2, 1, 0))
torch.permute(input=my_tensor, dims=(-1, -2, -3))
# tensor([[[0, 6, 12, 18], [3, 9, 15, 21]],
#         [[1, 7, 13, 19], [4, 10, 16, 22]],
#         [[2, 8, 14, 20], [5, 11, 17, 23]]])

torch.permute(input=my_tensor, dims=(0, 2, 1))
torch.permute(input=my_tensor, dims=(-3, -1, -2))
# tensor([[[0, 3], [1, 4], [2, 5]],
#         [[6, 9], [7, 10], [8, 11]],
#         [[12, 15], [13, 16], [14, 17]],
#         [[18, 21], [19, 22], [20, 23]]])

torch.permute(input=my_tensor, dims=(1, 0, 2))
torch.permute(input=my_tensor, dims=(-2, -3, -1))
# tensor([[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
#         [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]]])

my_tensor = torch.tensor([[[0., 1., 2.], [3., 4., 5.]],
                          [[6., 7., 8.], [9., 10., 11.]],
                          [[12., 13., 14.], [15., 16., 17.]],
                          [[18., 19., 20.], [21., 22., 23.]]])
torch.permute(input=my_tensor, dims=(0, 1, 2))
# tensor([[[0., 1., 2.], [3., 4., 5.]],
#         [[ 6., 7., 8.], [9., 10., 11.]],
#         [[12., 13., 14.], [15., 16., 17.]],
#         [[18., 19., 20.], [21., 22., 23.]]])

my_tensor = torch.tensor([[[0.+0.j, 1.+0.j, 2.+0.j],
                           [3.+0.j, 4.+0.j, 5.+0.j]],
                          [[6.+0.j, 7.+0.j, 8.+0.j],
                           [9.+0.j, 10.+0.j, 11.+0.j]],
                          [[12.+0.j, 13.+0.j, 14.+0.j],
                           [15.+0.j, 16.+0.j, 17.+0.j]],
                          [[18.+0.j, 19.+0.j, 20.+0.j],
                           [21.+0.j, 22.+0.j, 23.+0.j]]])
torch.permute(input=my_tensor, dims=(0, 1, 2))
# tensor([[[0.+0.j, 1.+0.j, 2.+0.j],
#          [3.+0.j, 4.+0.j, 5.+0.j]],
#         [[6.+0.j, 7.+0.j, 8.+0.j],
#          [9.+0.j, 10.+0.j, 11.+0.j]],
#         [[12.+0.j, 13.+0.j, 14.+0.j],
#          [15.+0.j, 16.+0.j, 17.+0.j]],
#         [[18.+0.j, 19.+0.j, 20.+0.j],
#          [21.+0.j, 22.+0.j, 23.+0.j]]])

my_tensor = torch.tensor([[[True, False, True], [True, False, True]],
                          [[False, True, False], [False, True, False]],
                          [[True, False, True], [True, False, True]],
                          [[False, True, False], [False, True, False]]])
torch.permute(input=my_tensor, dims=(0, 1, 2))
# tensor([[[True, False, True], [True, False, True]],
#         [[False, True, False], [False, True, False]],
#         [[True, False, True], [True, False, True]],
#         [[False, True, False], [False, True, False]]])
Enter fullscreen mode Exit fullscreen mode

Sentry image

Hands-on debugging session: instrument, monitor, and fix

Join Lazar for a hands-on session where you’ll build it, break it, debug it, and fix it. You’ll set up Sentry, track errors, use Session Replay and Tracing, and leverage some good ol’ AI to find and fix issues fast.

RSVP here →

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs