DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

1

transpose and t in PyTorch

Buy Me a Coffee

*Memos:

transpose() can get the 0D or more D transposed tensor of zero or more elements without losing data from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • transpose() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is dim0(Required-Type:int).
  • The 3rd argument with torch or the 2nd argument with a tensor is dim1(Required-Type:int).
  • swapaxes() and swapdims() are the aliases of transpose().
import torch

my_tensor = torch.tensor([[[0, 1, 2], [3, 4, 5]],
                          [[6, 7, 8], [9, 10, 11]],
                          [[12, 13, 14], [15, 16, 17]],
                          [[18, 19, 20], [21, 22, 23]]])
torch.transpose(input=my_tensor, dim0=0, dim1=0)
my_tensor.transpose(dim0=0, dim1=0)
torch.transpose(input=my_tensor, dim0=1, dim1=1)
torch.transpose(input=my_tensor, dim0=2, dim1=2)
torch.transpose(input=my_tensor, dim0=1, dim1=-2)
torch.transpose(input=my_tensor, dim0=2, dim1=-1)
torch.transpose(input=my_tensor, dim0=2, dim1=-2)
torch.transpose(input=my_tensor, dim0=-1, dim1=2)
torch.transpose(input=my_tensor, dim0=-2, dim1=1)
torch.transpose(input=my_tensor, dim0=-1, dim1=-1)
torch.transpose(input=my_tensor, dim0=-2, dim1=-2)
# tensor([[[0, 1, 2], [3, 4, 5]],
#         [[6, 7, 8], [9, 10, 11]],
#         [[12, 13, 14], [15, 16, 17]],
#         [[18, 19, 20], [21, 22, 23]]])

torch.transpose(input=my_tensor, dim0=0, dim1=1)
torch.transpose(input=my_tensor, dim0=1, dim1=0)
torch.transpose(input=my_tensor, dim0=0, dim1=-2)
torch.transpose(input=my_tensor, dim0=-2, dim1=0)
# tensor([[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
#         [[3, 4, 5], [ 9, 10, 11], [15, 16, 17], [21, 22, 23]]])

torch.transpose(input=my_tensor, dim0=0, dim1=2)
torch.transpose(input=my_tensor, dim0=2, dim1=0)
torch.transpose(input=my_tensor, dim0=0, dim1=-1)
torch.transpose(input=my_tensor, dim0=-1, dim1=0)
# tensor([[[0, 6, 12, 18], [3, 9, 15, 21]],
#         [[1, 7, 13, 19], [4, 10, 16, 22]],
#         [[2, 8, 14, 20], [5, 11, 17, 23]]])

torch.transpose(input=my_tensor, dim0=1, dim1=2)
torch.transpose(input=my_tensor, dim0=2, dim1=1)
torch.transpose(input=my_tensor, dim0=1, dim1=-1)
torch.transpose(input=my_tensor, dim0=-1, dim1=1)
torch.transpose(input=my_tensor, dim0=-1, dim1=-2)
torch.transpose(input=my_tensor, dim0=-2, dim1=-1)
torch.transpose(input=my_tensor, dim0=-2, dim1=2)
# tensor([[[0, 3], [1, 4], [2, 5]],
#         [[6, 9], [7, 10], [8, 11]],
#         [[12, 15], [13, 16], [14, 17]],
#         [[18, 21], [19, 22], [20, 23]]])

my_tensor = torch.tensor([[[0., 1., 2.], [3., 4., 5.]],
                          [[6., 7., 8.], [9., 10., 11.]],
                          [[12., 13., 14.], [15., 16., 17.]],
                          [[18., 19., 20.], [21., 22., 23.]]])
torch.transpose(input=my_tensor, dim0=0, dim1=0)
# tensor([[[0., 1., 2.], [3., 4., 5.]],
#         [[6., 7., 8.], [9., 10., 11.]],
#         [[12., 13., 14.], [15., 16., 17.]],
#         [[18., 19., 20.], [21., 22., 23.]]])

my_tensor = torch.tensor([[[0.+0.j, 1.+0.j, 2.+0.j],
                           [3.+0.j, 4.+0.j, 5.+0.j]],
                          [[6.+0.j, 7.+0.j, 8.+0.j],
                           [9.+0.j, 10.+0.j, 11.+0.j]],
                          [[12.+0.j, 13.+0.j, 14.+0.j],
                           [15.+0.j, 16.+0.j, 17.+0.j]],
                          [[18.+0.j, 19.+0.j, 20.+0.j],
                           [21.+0.j, 22.+0.j, 23.+0.j]]])
torch.transpose(input=my_tensor, dim0=0, dim1=0)
# tensor([[[0.+0.j, 1.+0.j, 2.+0.j],
#          [3.+0.j, 4.+0.j, 5.+0.j]],
#         [[6.+0.j, 7.+0.j, 8.+0.j],
#          [9.+0.j, 10.+0.j, 11.+0.j]],
#         [[12.+0.j, 13.+0.j, 14.+0.j],
#          [15.+0.j, 16.+0.j, 17.+0.j]],
#         [[18.+0.j, 19.+0.j, 20.+0.j],
#          [21.+0.j, 22.+0.j, 23.+0.j]]])

my_tensor = torch.tensor([[[True, False, True], [True, False, True]],
                          [[False, True, False], [False, True, False]],
                          [[True, False, True], [True, False, True]],
                          [[False, True, False], [False, True, False]]])
torch.transpose(input=my_tensor, dim0=0, dim1=0)
# tensor([[[True, False, True], [True, False, True]],
#         [[False, True, False], [False, True, False]],
#         [[True, False, True], [True, False, True]],
#         [[False, True, False], [False, True, False]]])
Enter fullscreen mode Exit fullscreen mode

t() can get the 0D, 1D or 2D transposed tensor of zero or more elements without losing data from the 0D, 1D or 2D tensor of zero or more elements as shown below:

*Memos:

  • t() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • t() is equivalent to transpose(input=my_tensor, dim0=0, dim1=1).
import torch

my_tensor = torch.tensor(0)

torch.t(input=my_tensor)
my_tensor.t()
# tensor(0)

my_tensor = torch.tensor([0, 1, 2])

torch.t(input=my_tensor)
# tensor([0, 1, 2])

my_tensor = torch.tensor([[0, 1, 2], [3, 4, 5],
                          [6, 7, 8], [9, 10, 11]])
torch.t(input=my_tensor)
# tensor([[0, 3, 6, 9],
#         [1, 4, 7, 10],
#         [2, 5, 8, 11]])

my_tensor = torch.tensor([[0., 1., 2.], [3., 4., 5.],
                          [6., 7., 8.], [9., 10., 11.]])
torch.t(input=my_tensor)
# tensor([[0., 3., 6., 9.],
#         [1., 4., 7., 10.],
#         [2., 5., 8., 11.]])

my_tensor = torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j],
                          [3.+0.j, 4.+0.j, 5.+0.j],
                          [6.+0.j, 7.+0.j, 8.+0.j],
                          [9.+0.j, 10.+0.j, 11.+0.j]])
torch.t(input=my_tensor)
# tensor([[0.+0.j, 3.+0.j, 6.+0.j, 9.+0.j],
#         [1.+0.j, 4.+0.j, 7.+0.j, 10.+0.j],
#         [2.+0.j, 5.+0.j, 8.+0.j, 11.+0.j]])

my_tensor = torch.tensor([[True, False, True], [True, False, True],
                          [False, True, False], [False, True, False]])
torch.t(input=my_tensor)
# tensor([[True, True, False, False],
#         [False, False, True, True],
#         [True, True, False, False]])
Enter fullscreen mode Exit fullscreen mode

Image of Timescale

🚀 pgai Vectorizer: SQLAlchemy and LiteLLM Make Vector Search Simple

We built pgai Vectorizer to simplify embedding management for AI applications—without needing a separate database or complex infrastructure. Since launch, developers have created over 3,000 vectorizers on Timescale Cloud, with many more self-hosted.

Read full post →

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs