DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

1

transpose and t in PyTorch

Buy Me a Coffee

*Memos:

transpose() can get the 0D or more D transposed tensor of zero or more elements without losing data from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • transpose() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is dim0(Required-Type:int).
  • The 3rd argument with torch or the 2nd argument with a tensor is dim1(Required-Type:int).
  • swapaxes() and swapdims() are the aliases of transpose().
import torch

my_tensor = torch.tensor([[[0, 1, 2], [3, 4, 5]],
                          [[6, 7, 8], [9, 10, 11]],
                          [[12, 13, 14], [15, 16, 17]],
                          [[18, 19, 20], [21, 22, 23]]])
torch.transpose(input=my_tensor, dim0=0, dim1=0)
my_tensor.transpose(dim0=0, dim1=0)
torch.transpose(input=my_tensor, dim0=1, dim1=1)
torch.transpose(input=my_tensor, dim0=2, dim1=2)
torch.transpose(input=my_tensor, dim0=1, dim1=-2)
torch.transpose(input=my_tensor, dim0=2, dim1=-1)
torch.transpose(input=my_tensor, dim0=2, dim1=-2)
torch.transpose(input=my_tensor, dim0=-1, dim1=2)
torch.transpose(input=my_tensor, dim0=-2, dim1=1)
torch.transpose(input=my_tensor, dim0=-1, dim1=-1)
torch.transpose(input=my_tensor, dim0=-2, dim1=-2)
# tensor([[[0, 1, 2], [3, 4, 5]],
#         [[6, 7, 8], [9, 10, 11]],
#         [[12, 13, 14], [15, 16, 17]],
#         [[18, 19, 20], [21, 22, 23]]])

torch.transpose(input=my_tensor, dim0=0, dim1=1)
torch.transpose(input=my_tensor, dim0=1, dim1=0)
torch.transpose(input=my_tensor, dim0=0, dim1=-2)
torch.transpose(input=my_tensor, dim0=-2, dim1=0)
# tensor([[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
#         [[3, 4, 5], [ 9, 10, 11], [15, 16, 17], [21, 22, 23]]])

torch.transpose(input=my_tensor, dim0=0, dim1=2)
torch.transpose(input=my_tensor, dim0=2, dim1=0)
torch.transpose(input=my_tensor, dim0=0, dim1=-1)
torch.transpose(input=my_tensor, dim0=-1, dim1=0)
# tensor([[[0, 6, 12, 18], [3, 9, 15, 21]],
#         [[1, 7, 13, 19], [4, 10, 16, 22]],
#         [[2, 8, 14, 20], [5, 11, 17, 23]]])

torch.transpose(input=my_tensor, dim0=1, dim1=2)
torch.transpose(input=my_tensor, dim0=2, dim1=1)
torch.transpose(input=my_tensor, dim0=1, dim1=-1)
torch.transpose(input=my_tensor, dim0=-1, dim1=1)
torch.transpose(input=my_tensor, dim0=-1, dim1=-2)
torch.transpose(input=my_tensor, dim0=-2, dim1=-1)
torch.transpose(input=my_tensor, dim0=-2, dim1=2)
# tensor([[[0, 3], [1, 4], [2, 5]],
#         [[6, 9], [7, 10], [8, 11]],
#         [[12, 15], [13, 16], [14, 17]],
#         [[18, 21], [19, 22], [20, 23]]])

my_tensor = torch.tensor([[[0., 1., 2.], [3., 4., 5.]],
                          [[6., 7., 8.], [9., 10., 11.]],
                          [[12., 13., 14.], [15., 16., 17.]],
                          [[18., 19., 20.], [21., 22., 23.]]])
torch.transpose(input=my_tensor, dim0=0, dim1=0)
# tensor([[[0., 1., 2.], [3., 4., 5.]],
#         [[6., 7., 8.], [9., 10., 11.]],
#         [[12., 13., 14.], [15., 16., 17.]],
#         [[18., 19., 20.], [21., 22., 23.]]])

my_tensor = torch.tensor([[[0.+0.j, 1.+0.j, 2.+0.j],
                           [3.+0.j, 4.+0.j, 5.+0.j]],
                          [[6.+0.j, 7.+0.j, 8.+0.j],
                           [9.+0.j, 10.+0.j, 11.+0.j]],
                          [[12.+0.j, 13.+0.j, 14.+0.j],
                           [15.+0.j, 16.+0.j, 17.+0.j]],
                          [[18.+0.j, 19.+0.j, 20.+0.j],
                           [21.+0.j, 22.+0.j, 23.+0.j]]])
torch.transpose(input=my_tensor, dim0=0, dim1=0)
# tensor([[[0.+0.j, 1.+0.j, 2.+0.j],
#          [3.+0.j, 4.+0.j, 5.+0.j]],
#         [[6.+0.j, 7.+0.j, 8.+0.j],
#          [9.+0.j, 10.+0.j, 11.+0.j]],
#         [[12.+0.j, 13.+0.j, 14.+0.j],
#          [15.+0.j, 16.+0.j, 17.+0.j]],
#         [[18.+0.j, 19.+0.j, 20.+0.j],
#          [21.+0.j, 22.+0.j, 23.+0.j]]])

my_tensor = torch.tensor([[[True, False, True], [True, False, True]],
                          [[False, True, False], [False, True, False]],
                          [[True, False, True], [True, False, True]],
                          [[False, True, False], [False, True, False]]])
torch.transpose(input=my_tensor, dim0=0, dim1=0)
# tensor([[[True, False, True], [True, False, True]],
#         [[False, True, False], [False, True, False]],
#         [[True, False, True], [True, False, True]],
#         [[False, True, False], [False, True, False]]])
Enter fullscreen mode Exit fullscreen mode

t() can get the 0D, 1D or 2D transposed tensor of zero or more elements without losing data from the 0D, 1D or 2D tensor of zero or more elements as shown below:

*Memos:

  • t() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • t() is equivalent to transpose(input=my_tensor, dim0=0, dim1=1).
import torch

my_tensor = torch.tensor(0)

torch.t(input=my_tensor)
my_tensor.t()
# tensor(0)

my_tensor = torch.tensor([0, 1, 2])

torch.t(input=my_tensor)
# tensor([0, 1, 2])

my_tensor = torch.tensor([[0, 1, 2], [3, 4, 5],
                          [6, 7, 8], [9, 10, 11]])
torch.t(input=my_tensor)
# tensor([[0, 3, 6, 9],
#         [1, 4, 7, 10],
#         [2, 5, 8, 11]])

my_tensor = torch.tensor([[0., 1., 2.], [3., 4., 5.],
                          [6., 7., 8.], [9., 10., 11.]])
torch.t(input=my_tensor)
# tensor([[0., 3., 6., 9.],
#         [1., 4., 7., 10.],
#         [2., 5., 8., 11.]])

my_tensor = torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j],
                          [3.+0.j, 4.+0.j, 5.+0.j],
                          [6.+0.j, 7.+0.j, 8.+0.j],
                          [9.+0.j, 10.+0.j, 11.+0.j]])
torch.t(input=my_tensor)
# tensor([[0.+0.j, 3.+0.j, 6.+0.j, 9.+0.j],
#         [1.+0.j, 4.+0.j, 7.+0.j, 10.+0.j],
#         [2.+0.j, 5.+0.j, 8.+0.j, 11.+0.j]])

my_tensor = torch.tensor([[True, False, True], [True, False, True],
                          [False, True, False], [False, True, False]])
torch.t(input=my_tensor)
# tensor([[True, True, False, False],
#         [False, False, True, True],
#         [True, True, False, False]])
Enter fullscreen mode Exit fullscreen mode

AWS Security LIVE!

Join us for AWS Security LIVE!

Discover the future of cloud security. Tune in live for trends, tips, and solutions from AWS and AWS Partners.

Learn More

Top comments (0)

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay