*Memos:
- My post explains transpose() and t().
- My post explains reshape() and view().
- My post explains permute().
- My post explains movedim().
adjoint() or mH can get the view of the 2D or more D transposed and conjugated tensor of zero or more elements without losing data from the 2D or more D tensor of zero or more elements as shown below:
-
adjoint()
can be used with torch or a tensor whilemH
can be used with a tensor but not withtorch
. - For
adjoint()
, the 1st argument(input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
,complex
orbool
). - For
mH
, using a tensor(Required-Type:tensor
ofint
,float
,complex
orbool
). -
adjoint()
is equivalent tomH
, equivalent totranspose(-2, -1)
for anint
,float
orbool
tensor and equivalent totranspose(-2, -1).conj()
for acomplex
tensor. -
adjoint()
ormH
can also get the 0D tensor of zero or more elements but it's deprecated.
import torch
my_tensor = torch.tensor([[0, 1, 2], [3, 4, 5],
[6, 7, 8], [9, 10, 11]])
torch.adjoint(input=my_tensor)
my_tensor.adjoint()
my_tensor.mH
# tensor([[0, 3, 6, 9],
# [1, 4, 7, 10],
# [2, 5, 8, 11]])
my_tensor = torch.tensor([[[0, 1, 2], [3, 4, 5]],
[[6, 7, 8], [9, 10, 11]],
[[12, 13, 14], [15, 16, 17]],
[[18, 19, 20], [21, 22, 23]]])
torch.adjoint(input=my_tensor)
my_tensor.mH
# tensor([[[0, 3], [1, 4], [2, 5]],
# [[6, 9], [7, 10], [8, 11]],
# [[12, 15], [13, 16], [14, 17]],
# [[18, 21], [19, 22], [20, 23]]])
my_tensor = torch.tensor([[[0., 1., 2.], [3., 4., 5.]],
[[6., 7., 8.], [9., 10., 11.]],
[[12., 13., 14.], [15., 16., 17.]],
[[18., 19., 20.], [21., 22., 23.]]])
torch.adjoint(input=my_tensor)
my_tensor.mH
# tensor([[[0., 3.], [1., 4.], [2., 5.]],
# [[6., 9.], [7., 10.], [8., 11.]],
# [[12., 15.], [13., 16.], [14., 17.]],
# [[18., 21.], [19., 22.], [20., 23.]]])
my_tensor = torch.tensor([[[0.+0.j, 1.+0.j, 2.+0.j],
[3.+0.j, 4.+0.j, 5.+0.j]],
[[6.+0.j, 7.+0.j, 8.+0.j],
[9.+0.j, 10.+0.j, 11.+0.j]],
[[12.+0.j, 13.+0.j, 14.+0.j],
[15.+0.j, 16.+0.j, 17.+0.j]],
[[18.+0.j, 19.+0.j, 20.+0.j],
[21.+0.j, 22.+0.j, 23.+0.j]]])
torch.adjoint(input=my_tensor)
my_tensor.mH
# tensor([[[0.-0.j, 3.-0.j], [1.-0.j, 4.-0.j], [2.-0.j, 5.-0.j]],
# [[6.-0.j, 9.-0.j], [7.-0.j, 10.-0.j], [8.-0.j, 11.-0.j]],
# [[12.-0.j, 15.-0.j], [13.-0.j, 16.-0.j], [14.-0.j, 17.-0.j]],
# [[18.-0.j, 21.-0.j], [19.-0.j, 22.-0.j], [20.-0.j, 23.-0.j]]])
my_tensor = torch.tensor([[[True, False, True], [True, False, True]],
[[False, True, False], [False, True, False]],
[[True, False, True], [True, False, True]],
[[False, True, False], [False, True, False]]])
torch.adjoint(input=my_tensor)
my_tensor.mH
# tensor([[[True, True], [False, False], [True, True]],
# [[False, False], [True, True], [False, False]],
# [[True, True], [False, False], [True, True]],
# [[False, False], [True, True], [False, False]]])
mT can get the view of the 2D or more D transposed tensor of zero or more elements without losing data from the 2D or more D tensor of zero or more elements as shown below:
-
mT
can be used with a tensor but not withtorch
. - Using a tensor(Required-Type:
tensor
ofint
,float
,complex
orbool
). -
mT
can also get the 0D tensor of zero or more elements but it's deprecated.
import torch
my_tensor = torch.tensor([[0, 1, 2], [3, 4, 5],
[6, 7, 8], [9, 10, 11]])
my_tensor.mT
# tensor([[0, 3, 6, 9],
# [1, 4, 7, 10],
# [2, 5, 8, 11]])
my_tensor = torch.tensor([[[0, 1, 2], [3, 4, 5]],
[[6, 7, 8], [9, 10, 11]],
[[12, 13, 14], [15, 16, 17]],
[[18, 19, 20], [21, 22, 23]]])
my_tensor.mT
# tensor([[[0, 3], [1, 4], [2, 5]],
# [[6, 9], [7, 10], [8, 11]],
# [[12, 15], [13, 16], [14, 17]],
# [[18, 21], [19, 22], [20, 23]]])
my_tensor = torch.tensor([[[0., 1., 2.], [3., 4., 5.]],
[[6., 7., 8.], [9., 10., 11.]],
[[12., 13., 14.], [15., 16., 17.]],
[[18., 19., 20.], [21., 22., 23.]]])
my_tensor.mT
# tensor([[[0., 3.], [1., 4.], [2., 5.]],
# [[6., 9.], [7., 10.], [8., 11.]],
# [[12., 15.], [13., 16.], [14., 17.]],
# [[18., 21.], [19., 22.], [20., 23.]]])
my_tensor = torch.tensor([[[0.+0.j, 1.+0.j, 2.+0.j],
[3.+0.j, 4.+0.j, 5.+0.j]],
[[6.+0.j, 7.+0.j, 8.+0.j],
[9.+0.j, 10.+0.j, 11.+0.j]],
[[12.+0.j, 13.+0.j, 14.+0.j],
[15.+0.j, 16.+0.j, 17.+0.j]],
[[18.+0.j, 19.+0.j, 20.+0.j],
[21.+0.j, 22.+0.j, 23.+0.j]]])
my_tensor.mT
# tensor([[[0.+0.j, 3.+0.j], [ 1.+0.j, 4.+0.j], [2.+0.j, 5.+0.j]],
# [[6.+0.j, 9.+0.j], [7.+0.j, 10.+0.j], [8.+0.j, 11.+0.j]],
# [[12.+0.j, 15.+0.j], [13.+0.j, 16.+0.j], [14.+0.j, 17.+0.j]],
# [[18.+0.j, 21.+0.j], [19.+0.j, 22.+0.j], [20.+0.j, 23.+0.j]]])
my_tensor = torch.tensor([[[True, False, True], [True, False, True]],
[[False, True, False], [False, True, False]],
[[True, False, True], [True, False, True]],
[[False, True, False], [False, True, False]]])
my_tensor.mT
# tensor([[[True, True], [False, False], [True, True]],
# [[False, False], [True, True], [False, False]],
# [[True, True], [False, False], [True, True]],
# [[False, False], [True, True], [False, False]]])
Top comments (0)