DEV Community

Marcelo Costa
Marcelo Costa

Posted on • Edited on

2

Using Python to create Greenplum tables with random schema

Having a large amount of test data sometimes take a lot of effort, and to simulate a more realistic scenario, it’s good to have a large number of tables with distinct column types. This script generates random tables schema for Greenplum.

If you want to set up a Greenplum environment for dev and test purposes, take a look at: https://dev.to/mesmacosta/quickly-set-up-a-greenplum-environment-on-gcp-2lkd

Environment

Activate your virtualenv
pip install --upgrade virtualenv
python3 -m virtualenv --python python3 env
source ./env/bin/activate
Enter fullscreen mode Exit fullscreen mode
Install the requirements for the metadata generator
pip install -r requirements.txt
Enter fullscreen mode Exit fullscreen mode

Code

psycopg2-binary
import argparse
import logging
import random
import sys
import uuid
from psycopg2 import connect
_DATA_TYPES = [
'INT', 'SERIAL', 'SMALLINT', 'UUID', 'FLOAT', 'REAL', 'CHAR(5)',
'VARCHAR(25)', 'TEXT', 'JSON', 'DATE', 'TIME', 'TIMESTAMP'
]
_COLUMN_NAMES = [
'name', 'address', 'city', 'state', 'date_time', 'paragraph', 'randomdata',
'person', 'credit_card', 'size', 'reason', 'school', 'food', 'location',
'house', 'price', 'cpf', 'cnpj', 'passport', 'security_number',
'phone_number', 'bank_account_number', 'ip_address', 'stocks'
]
_TABLE_NAMES = [
'school_info', 'personal_info', 'persons', 'employees', 'companies',
'store', 'home'
]
_SCHEMA_NAMES = [
'school_warehouse', 'company_warehouse', 'on_prem_warehouse',
'factory_warehouse', 'organization_warehouse'
]
def get_conn(connection_args):
return connect(database=connection_args['database'],
host=connection_args['host'],
user=connection_args['user'],
password=connection_args['pass'])
def create_random_metadata(connection_args):
conn = get_conn(connection_args)
cursor = conn.cursor()
for x in range(4):
schema_name, schema_stmt = build_create_schema_statement()
cursor.execute(schema_stmt)
for y in range(250):
query = build_create_table_statement(schema_name)
print('\n' + query)
cursor.execute(query)
conn.commit()
cursor.close()
def get_random_data_type():
return random.choice(_DATA_TYPES)
def get_random_column_name():
return random.choice(_COLUMN_NAMES)
def get_random_table_name():
return random.choice(_TABLE_NAMES)
def get_random_schema_name():
return random.choice(_SCHEMA_NAMES)
def build_create_table_statement(schema_name):
table_stmt = 'CREATE TABLE {}.{}{} ( '.format(schema_name,
get_random_table_name(),
uuid.uuid4().hex[:8])
table_stmt = '{}{}{} {}'.format(table_stmt, get_random_column_name(),
str(random.randint(1, 100000)),
get_random_data_type())
for x in range(random.randint(1, 15)):
table_stmt += ', {}{}'.format(get_random_column_name(),
str(random.randint(1, 100000))) + \
' {}'.format(get_random_data_type())
table_stmt = '{} )'.format(table_stmt)
return table_stmt
def build_create_schema_statement():
schema_name = '{}{}'.format(get_random_schema_name(),
str(random.randint(1, 100000)))
schema_stmt = 'CREATE SCHEMA {} '.format(schema_name)
return schema_name, schema_stmt
def parse_args():
parser = argparse.ArgumentParser(
description='Command line generate random metadata into greenplum')
parser.add_argument(
'--greenplum-host',
help='Your greenplum server host, this is required even'
' for the raw_metadata_csv,'
' so we are able to map the created entries'
' resource with the greenplum host',
required=True)
parser.add_argument('--greenplum-user',
help='Your greenplum credentials user')
parser.add_argument('--greenplum-pass',
help='Your greenplum credentials password')
parser.add_argument('--greenplum-database',
help='Your greenplum database name')
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
# Enable logging
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
create_random_metadata({
'database': args.greenplum_database,
'host': args.greenplum_host,
'user': args.greenplum_user,
'pass': args.greenplum_pass
})

Execution

export GREENPLUM_SERVER=127.0.0.1
export GREENPLUM_USERNAME=gpadmin
export GREENPLUM_PASSWORD=gppassword
export GREENPLUM_DATABASE=gpadmin

python metadata_generator.py \
--greenplum-host=$GREENPLUM_SERVER \
--greenplum-user=$GREENPLUM_USERNAME \
--greenplum-pass=$GREENPLUM_PASSWORD \
--greenplum-database=$GREENPLUM_DATABASE
Enter fullscreen mode Exit fullscreen mode

And that's it!

If you have difficulties, don’t hesitate reaching out. I would love to help you!

API Trace View

How I Cut 22.3 Seconds Off an API Call with Sentry

Struggling with slow API calls? Dan Mindru walks through how he used Sentry's new Trace View feature to shave off 22.3 seconds from an API call.

Get a practical walkthrough of how to identify bottlenecks, split tasks into multiple parallel tasks, identify slow AI model calls, and more.

Read more →

Top comments (0)

A Workflow Copilot. Tailored to You.

Pieces.app image

Our desktop app, with its intelligent copilot, streamlines coding by generating snippets, extracting code from screenshots, and accelerating problem-solving.

Read the docs

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay