I’ll show:
- Hardware + local dev stack
- Cloud layout + Python infra scripts (VPC → EC2 → S3 → SSM)
- Server maintenance automations (health, patches, logs)
- Network setup (boto3)
- Pattern generator (Phase Sync Maker)
- Leverage counter (BINFLOW time events)
- A minimal dashboard (Streamlit)
- Multi-platform posting bots (Dev.to, Hashnode, Medium)
- A daemonic scheduler to run it all (APScheduler)
Everything stays Python-first. Swap credentials/placeholders with your own.
🌐 Part IV — The Builder’s Stack
Python as the Control Plane for Temporal DevOps, Patterns, and Proof of Leverage
by Peace Thabiwa — Botswana 🇧🇼
Founder SAGEWORKS_AI | Creator BINFLOW
0) One-person hardware kit (realistic)
- Laptop: 16–32GB RAM, 8+ cores (Mac/Linux)
- Local services: Docker Desktop / Podman
- Python: 3.11+ (venv/uv/poetry)
- GPU (optional): 8–16GB VRAM (for local models)
- Storage: 1TB NVMe (fast local vector stores, logs)
Philosophy: laptop is thinking node, cloud is execution field.
1) Repository layout (monorepo, Python at the center)
flow/
binflow/ # core time+phase library
__init__.py
events.py
leverage.py
psm/ # Phase Sync Maker (pattern generator)
__init__.py
cli.py
templates/
rest-service/
python/
app.py.j2
tests_test_app.py.j2
cloud/ # infra & ops (all Python)
vpc.py
ec2.py
s3.py
ssm.py
health.py
logs.py
bots/ # posting automations
devto.py
hashnode.py
medium.py
ui/ # simple dashboard
dashboard.py # Streamlit
scheduler/
run.py # APScheduler entrypoint
.env.example
requirements.txt
README.md
2) BINFLOW: time-labeled events + leverage
binflow/events.py
from dataclasses import dataclass
from datetime import datetime, timezone
from enum import Enum
import sqlite3
from pathlib import Path
import json
DB = Path(".binflow.db")
class Phase(str, Enum):
FOCUS = "Focus"
LOOP = "Loop"
TRANSITION = "Transition"
PAUSE = "Pause"
EMERGENCE = "Emergence"
@dataclass
class FlowEvent:
pattern: str
action: str # "create" | "reuse" | "modify" | "publish"
phase: Phase
payload: dict
def _conn():
create = not DB.exists()
con = sqlite3.connect(DB)
if create:
con.execute("""CREATE TABLE events(
id INTEGER PRIMARY KEY,
ts TEXT NOT NULL,
pattern TEXT NOT NULL,
action TEXT NOT NULL,
phase TEXT NOT NULL,
payload TEXT NOT NULL
);""")
return con
def record_event(e: FlowEvent):
ts = datetime.now(timezone.utc).isoformat()
con = _conn()
con.execute(
"INSERT INTO events(ts,pattern,action,phase,payload) VALUES (?,?,?,?,?)",
(ts, e.pattern, e.action, e.phase.value, json.dumps(e.payload))
)
con.commit()
con.close()
binflow/leverage.py
import sqlite3
from pathlib import Path
from collections import defaultdict
DB = Path(".binflow.db")
PHASE_VALUE = {
"Focus": 1.0,
"Loop": 1.2,
"Transition": 1.4,
"Pause": 0.6,
"Emergence": 1.8, # inventions get a higher weight
}
TRUST_START = 0.8 # naive baseline; could be learned from tests/uptime
def leverage_index(pattern: str) -> float:
if not DB.exists(): return 0.0
con = sqlite3.connect(DB)
cur = con.cursor()
cur.execute("SELECT action, phase FROM events WHERE pattern=?",(pattern,))
rows = cur.fetchall()
con.close()
counts = defaultdict(int)
score = 0.0
for action, phase in rows:
counts[(action, phase)] += 1
score += 1.0 * PHASE_VALUE.get(phase, 1.0)
# simple trust heuristic: more modifies passing CI -> higher trust
# (you can wire this to your CI status table later)
trust_factor = min(1.5, TRUST_START + 0.02 * counts.get(("modify","Loop"), 0))
return round(score * trust_factor, 3)
3) Phase Sync Maker (PSM): generate patterns (Python service)
psm/cli.py
import json, os
from datetime import datetime, timezone
from pathlib import Path
import click
from jinja2 import Environment, FileSystemLoader
from binflow.events import record_event, FlowEvent, Phase
ROOT = Path(__file__).resolve().parents[1]
TPL = ROOT / "psm" / "templates"
def render(pattern: str, stack: str, ctx: dict):
env = Environment(loader=FileSystemLoader(TPL / pattern / stack))
outdir = ROOT / "services" / f"{ctx['name']}-{stack}"
outdir.mkdir(parents=True, exist_ok=True)
for tname in env.list_templates():
if not tname.endswith(".j2"): continue
template = env.get_template(tname)
content = template.render(**ctx, binflow=dict(
phase=ctx["phase"], ts=datetime.now(timezone.utc).isoformat()))
dest = outdir / tname[:-3]
dest.parent.mkdir(parents=True, exist_ok=True)
dest.write_text(content)
@click.group()
def cli(): ...
@cli.command("gen")
@click.option("--pattern", required=True, type=str)
@click.option("--name", required=True, type=str)
@click.option("--stack", default="python", type=click.Choice(["python"]))
@click.option("--phase", default="Focus", type=click.Choice([p.value for p in Phase]))
def gen(pattern, name, stack, phase):
ctx = dict(name=name, phase=phase)
render(pattern, stack, ctx)
record_event(FlowEvent(
pattern=f"{pattern}:{name}", action="create", phase=Phase(phase), payload=ctx
))
click.echo(f"Generated {pattern}/{name} in phase={phase}")
if __name__ == "__main__":
cli()
psm/templates/rest-service/python/app.py.j2
# @binflow phase={{ binflow.phase }} ts={{ binflow.ts }}
from fastapi import FastAPI
app = FastAPI(title="{{ name }}")
@app.get("/ping")
def ping():
return {"ok": True, "phase": "{{ binflow.phase }}"}
4) Cloud: VPC → EC2 → S3 → SSM with Python (boto3)
Create a minimal network + instance fleet controlled entirely by Python.
cloud/vpc.py
import boto3, os
ec2 = boto3.client("ec2", region_name=os.getenv("AWS_REGION","us-east-1"))
def ensure_vpc(name="flow-vpc"):
vpcs = ec2.describe_vpcs(Filters=[{"Name":"tag:Name","Values":[name]}])["Vpcs"]
if vpcs: return vpcs[0]["VpcId"]
v = ec2.create_vpc(CidrBlock="10.42.0.0/16")["Vpc"]
ec2.create_tags(Resources=[v["VpcId"]], Tags=[{"Key":"Name","Value":name}])
ec2.modify_vpc_attribute(VpcId=v["VpcId"], EnableDnsSupport={"Value":True})
ec2.modify_vpc_attribute(VpcId=v["VpcId"], EnableDnsHostnames={"Value":True})
return v["VpcId"]
cloud/ec2.py
import boto3, os
ec2 = boto3.resource("ec2", region_name=os.getenv("AWS_REGION","us-east-1"))
def launch_runner(vpc_id: str, name="flow-runner"):
sg = list(ec2.security_groups.filter(Filters=[
{"Name":"group-name","Values":[f"{name}-sg"]}
]))
if not sg:
sg = ec2.create_security_group(
GroupName=f"{name}-sg", Description="Flow runner", VpcId=vpc_id
)
sg.authorize_ingress(IpPermissions=[{
"IpProtocol":"tcp","FromPort":22,"ToPort":22,
"IpRanges":[{"CidrIp":"0.0.0.0/0"}]
}])
else:
sg = sg[0]
instances = list(ec2.instances.filter(Filters=[
{"Name":"tag:Name","Values":[name]}, {"Name":"instance-state-name","Values":["running","pending"]}
]))
if instances: return instances[0].id
i = ec2.create_instances(
ImageId=os.getenv("AMI","ami-0c94855ba95c71c99"), # update to your region
MinCount=1, MaxCount=1, InstanceType="t3.medium",
SecurityGroupIds=[sg.id], TagSpecifications=[{
"ResourceType":"instance","Tags":[{"Key":"Name","Value":name}]
}]
)[0]
return i.id
cloud/s3.py
import boto3, os
s3 = boto3.client("s3", region_name=os.getenv("AWS_REGION","us-east-1"))
def ensure_bucket(name="flow-artifacts-xyz"):
buckets = [b["Name"] for b in s3.list_buckets()["Buckets"]]
if name in buckets: return name
s3.create_bucket(Bucket=name)
return name
cloud/ssm.py
import boto3, os, time
ssm = boto3.client("ssm", region_name=os.getenv("AWS_REGION","us-east-1"))
def run_patch(instance_id: str):
resp = ssm.send_command(
InstanceIds=[instance_id],
DocumentName="AWS-RunPatchBaseline",
Parameters={"Operation":["Install"]}
)
cid = resp["Command"]["CommandId"]
time.sleep(5)
return cid
5) Ops automations: health, logs, patch windows
cloud/health.py
import requests, time
def check_http(url: str, retries=3, backoff=2):
for i in range(retries):
try:
r = requests.get(url, timeout=3)
return {"status": r.status_code, "ok": r.ok}
except requests.RequestException:
time.sleep(backoff * (i+1))
return {"status": 0, "ok": False}
cloud/logs.py
import gzip, shutil
from pathlib import Path
from datetime import datetime
def rotate(path="logs/app.log"):
p = Path(path)
if not p.exists(): return
ts = datetime.now().strftime("%Y%m%d_%H%M")
out = Path("logs/archive") / f"{p.stem}-{ts}.log.gz"
out.parent.mkdir(parents=True, exist_ok=True)
with open(p, "rb") as f_in, gzip.open(out, "wb") as f_out:
shutil.copyfileobj(f_in, f_out)
p.write_text("") # truncate
6) UI: a tiny Streamlit dashboard (flows + leverage)
ui/dashboard.py
import streamlit as st
import sqlite3
from binflow.leverage import leverage_index
st.set_page_config(page_title="BINFLOW Dashboard", layout="wide")
st.title("🌀 BINFLOW — Flows & Leverage")
con = sqlite3.connect(".binflow.db")
rows = con.execute("SELECT ts, pattern, action, phase FROM events ORDER BY ts DESC LIMIT 200").fetchall()
con.close()
patterns = sorted({r[1] for r in rows})
sel = st.selectbox("Pattern", patterns) if patterns else None
col1, col2 = st.columns(2)
with col1:
st.subheader("Recent Events")
st.table([{"ts":r[0], "pattern":r[1], "action":r[2], "phase":r[3]} for r in rows])
with col2:
if sel:
st.subheader("Leverage")
st.metric(label=f"{sel}", value=leverage_index(sel))
st.caption("Leverage = usage_count × phase_value × trust_factor")
Run:
streamlit run ui/dashboard.py
7) Cross-posting bots (Dev.to, Hashnode, Medium)
Note: keep API keys in environment variables; handle rate limits.
bots/devto.py
import os, requests
API = "https://dev.to/api/articles"
def post_devto(title: str, markdown_body: str, tags=None, published=False):
headers = {"api-key": os.getenv("DEVTO_API_KEY")}
payload = {
"article": {
"title": title,
"published": published,
"body_markdown": markdown_body,
"tags": tags or ["binflow","python","web4"]
}
}
r = requests.post(API, json=payload, headers=headers, timeout=15)
r.raise_for_status()
return r.json()
bots/hashnode.py (GraphQL)
import os, requests
def post_hashnode(title: str, markdown_body: str, publication_id: str):
url = "https://gql.hashnode.com"
headers = {"Content-Type":"application/json","Authorization": os.getenv("HASHNODE_TOKEN")}
query = """
mutation($input: PublishPostInput!){
publishPost(input: $input){ post{ id, slug, title } }
}"""
variables = {"input":{
"title": title,
"contentMarkdown": markdown_body,
"publicationId": publication_id
}}
r = requests.post(url, json={"query":query, "variables":variables}, headers=headers, timeout=20)
r.raise_for_status()
return r.json()
bots/medium.py
import os, requests
def post_medium(user_id: str, title: str, content_markdown: str, tags=None, publish_status="draft"):
headers = {
"Authorization": f"Bearer {os.getenv('MEDIUM_TOKEN')}",
"Content-Type": "application/json"
}
url = f"https://api.medium.com/v1/users/{user_id}/posts"
payload = {
"title": title,
"contentFormat": "markdown",
"content": content_markdown,
"publishStatus": publish_status,
"tags": tags or ["BINFLOW","TemporalWeb","Python"]
}
r = requests.post(url, json=payload, headers=headers, timeout=20)
r.raise_for_status()
return r.json()
When a post is published, record a BINFLOW event to increase leverage for the pattern being discussed:
from binflow.events import record_event, FlowEvent, Phase
def record_publish(pattern: str, platform: str, url: str):
record_event(FlowEvent(
pattern=pattern,
action="publish",
phase=Phase.EMERGENCE, # publication = emergence by default
payload={"platform": platform, "url": url}
))
8) Scheduler: wire everything together (APScheduler)
scheduler/run.py
import os, logging
from apscheduler.schedulers.background import BackgroundScheduler
from datetime import datetime
from cloud.logs import rotate
from cloud.health import check_http
from cloud.ssm import run_patch
from binflow.events import record_event, FlowEvent, Phase
from binflow.leverage import leverage_index
from bots.devto import post_devto
logging.basicConfig(level=logging.INFO)
def job_healthcheck():
r = check_http(os.getenv("HEALTH_URL","http://localhost:8000/ping"))
record_event(FlowEvent(pattern="rest-service:analytics-api",
action="healthcheck",
phase=Phase.LOOP,
payload=r))
logging.info(f"Health: {r}")
def job_rotate_logs():
rotate("logs/app.log")
record_event(FlowEvent(pattern="ops:logs",
action="rotate",
phase=Phase.TRANSITION,
payload={"path":"logs/app.log"}))
logging.info("Log rotation done")
def job_patch_instance():
iid = os.getenv("INSTANCE_ID")
if not iid: return
cid = run_patch(iid)
record_event(FlowEvent(pattern="ops:ssm",
action="patch",
phase=Phase.TRANSITION,
payload={"command_id": cid}))
logging.info(f"Patch run {cid}")
def job_share_devto():
# example: publish leverage report
pat = "rest-service:analytics-api"
li = leverage_index(pat)
body = f"# Leverage Report\n\nPattern: **{pat}**\n\nLeverage: **{li}**\n\n*Generated {datetime.utcnow().isoformat()}Z*"
try:
res = post_devto(title="BINFLOW Leverage Report", markdown_body=body, published=False)
record_event(FlowEvent(pattern=pat, action="publish", phase=Phase.EMERGENCE, payload={"platform":"dev.to","id":res.get("id")}))
except Exception as e:
logging.exception(e)
if __name__ == "__main__":
s = BackgroundScheduler(timezone="UTC")
s.add_job(job_healthcheck, "interval", minutes=5)
s.add_job(job_rotate_logs, "cron", minute=0) # hourly
s.add_job(job_patch_instance, "cron", hour=3, minute=0) # nightly
s.add_job(job_share_devto, "cron", hour=9, minute=30) # daily draft
s.start()
logging.info("Scheduler started. Press Ctrl+C to exit.")
try:
import time
while True: time.sleep(3600)
except KeyboardInterrupt:
s.shutdown()
9) First-run script (local demo)
# create venv + deps
python -m venv .venv && source .venv/bin/activate
pip install -r requirements.txt
# generate a pattern (Python REST)
python -m psm.cli gen --pattern rest-service --name analytics-api --stack python --phase Focus
# run the dashboard
streamlit run ui/dashboard.py
# start scheduler
python scheduler/run.py
requirements.txt
boto3
requests
streamlit
jinja2
click
apscheduler
10) How this feels in real life (flow)
- You generate a pattern in Focus → event recorded
- You deploy via Python infra scripts → Transition events
- Your service runs Loop checks (health, logs) on schedule
- You write a post; bots publish & record Emergence
- The dashboard shows Leverage rising as others reuse your pattern or you post more artifacts
- All of this is Python driving the machine
Why this matters
We’re not just automating DevOps — we’re writing time into the stack.
Every script, deployment, post, and reuse becomes proof-of-leverage for your work.
Your influence is the function of your patterns in motion.
Join me (Botswana → the world)
I’m Peace Thabiwa. I have a working base, the architecture, and a mountain of ideas.
I need Python pros, cloud engineers, UI designers, and Web3 builders who feel this rhythm and want to turn it into reality.
- 📧 peacethabibinflow@proton.me
- 💻 github.com/Sageworks-AI
- 🎥 YouTube: House of Sages (@house_of_sages7228)
No funding yet — just proof.
We’ll ship public demos, track leverage openly, and make the case with working software.
If that resonates, you’re already part of the flow.
Top comments (0)