DEV Community

Cover image for Building a Simple RAG System Using FAISS
Yogana Vinoth
Yogana Vinoth

Posted on

Building a Simple RAG System Using FAISS

πŸ“š Table of Contents

  1. What is RAG and Why It Matters
  2. High-Level Architecture of a RAG System
  3. Tech Stack & Prerequisites
  4. Step 1: Installing Dependencies
  5. Step 2: Preparing and Chunking Documents
  6. Step 3: Generating Embeddings
  7. Step 4: Storing Vectors in FAISS
  8. Step 5: Retrieving Relevant Context
  9. Step 6: Augmenting Prompts & Querying the LLM
  10. Real-World Use Cases
  11. Common Developer Questions (FAQ)
  12. Related Tools & Libraries
  13. Conclusion & Next Steps

What is RAG and Why It Matters

Retrieval-Augmented Generation (RAG)combines:

Information Retrieval (vector search)
Text Generation (LLMs)

Instead of relying purely on the model’s training data, RAG:

  • Injects fresh, private, or domain-specific data
  • Reduces hallucinations
  • Improves factual accuracy

πŸ‘‰ Perfect for chatbots, internal knowledge bases, support tools, and search assistants.

High-Level Architecture of a RAG System

User Query
↓
Embedding Model
↓
FAISS Vector Search
↓
Relevant Chunks
↓
LLM Prompt Augmentation
↓
Final Answer

Key idea: Retrieve first, then generate.

Tech Stack & Prerequisites
Core Stack

  • Python 3.9+
  • FAISS – Vector similarity search
  • Sentence Transformers – Text embeddings
  • OpenAI / Any LLM API – Answer generation

You Should Know

  • Basic Python
  • REST APIs
  • Vector embeddings (conceptually)

Step 1: Installing Dependencies
bash
pip install faiss-cpu sentence-transformers openai tiktoken

πŸ’‘ Tip:
Use faiss-gpu if you’re running on CUDA for large-scale datasets.

Step 2: Preparing and Chunking Documents

LLMs work better with small, meaningful chunks.
python
def chunk_text(text, chunk_size=500, overlap=50):
chunks = []
start = 0

while start < len(text):
    end = start + chunk_size
    chunks.append(text[start:end])
    start += chunk_size - overlap

return chunks
Enter fullscreen mode Exit fullscreen mode

Why chunking matters

  • Improves retrieval precision
  • Prevents token overflow
  • Enables semantic search

Step 3: Generating Embeddings

We’ll use sentence-transformers.

python
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("all-MiniLM-L6-v2")

embeddings = model.encode(chunks, convert_to_numpy=True)

βœ” Fast
βœ” Lightweight
βœ” Production-friendly

Step 4: Storing Vectors in FAISS
python
import faiss
import numpy as np

dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)

index.add(embeddings)

print("Total vectors indexed:", index.ntotal)

Why FAISS?

  • Extremely fast similarity search
  • Scales to millions of vectors
  • Battle-tested in production systems

Step 5: Retrieving Relevant Context

python
def retrieve_context(query, top_k=3):
query_embedding = model.encode([query])
distances, indices = index.search(query_embedding, top_k)

return [chunks[i] for i in indices[0]]
Enter fullscreen mode Exit fullscreen mode

πŸ” This step is the heart of RAG.

Step 6: Augmenting Prompts & Querying the LLM

python
import openai

def generate_answer(query):
context = retrieve_context(query)
prompt = f"""
Use the following context to answer the question:

Context:
{''.join(context)}

Question:
{query}


response = openai.ChatCompletion.create(
    model="gpt-4",
    messages=[{"role": "user", "content": prompt}],
    temperature=0.2
)

return response.choices[0].message.content
Enter fullscreen mode Exit fullscreen mode

Prompt Engineering Tips

  • Keep temperature low for factual answers
  • Always label Context clearly
  • Avoid injecting irrelevant chunks

Real-World Use Cases

βœ… Internal documentation assistant
βœ… Customer support chatbot
βœ… Codebase Q&A system
βœ… Legal or medical document search
βœ… Product recommendation engines

Common Developer Questions (FAQ)
❓ Why not just fine-tune the LLM?

  • Fine-tuning is expensive
  • RAG allows real-time updates
  • No retraining needed when data changes

❓ How many chunks should I retrieve?

  • Usually 3–5
  • More chunks = more tokens + noise

❓ Can I store metadata?

Yes. Use a parallel structure:

python
metadata = {index_id: {"source": "doc1.txt"}}

❓ Is FAISS production-ready?

Absolutely. Used at Meta, Amazon, and large-scale AI systems.

Related Tools & Libraries

  • FAISS – Vector similarity search
  • ChromaDB – Managed vector DB
  • Pinecone – Fully hosted vector search
  • Weaviate – Graph + vector DB
  • LangChain – RAG orchestration
  • LlamaIndex – Document indexing framework

Conclusion & Next Steps

You’ve now built a fully working RAG system using FAISS:

  • Semantic search βœ”
  • Context-aware generation βœ”
  • Scalable architecture βœ”

πŸš€ Next Improvements

  • Add document loaders (PDF, HTML)
  • Introduce hybrid search (BM25 + vectors)
  • Cache embeddings
  • Add streaming responses

πŸ‘‰ Follow me for more dev tutorials on AI, LLMs, and system design.
If you found this useful, drop a ❀️ or comment on Dev.to!

Top comments (0)