π Table of Contents
- What is RAG and Why It Matters
- High-Level Architecture of a RAG System
- Tech Stack & Prerequisites
- Step 1: Installing Dependencies
- Step 2: Preparing and Chunking Documents
- Step 3: Generating Embeddings
- Step 4: Storing Vectors in FAISS
- Step 5: Retrieving Relevant Context
- Step 6: Augmenting Prompts & Querying the LLM
- Real-World Use Cases
- Common Developer Questions (FAQ)
- Related Tools & Libraries
- Conclusion & Next Steps
What is RAG and Why It Matters
Retrieval-Augmented Generation (RAG)combines:
Information Retrieval (vector search)
Text Generation (LLMs)
Instead of relying purely on the modelβs training data, RAG:
- Injects fresh, private, or domain-specific data
- Reduces hallucinations
- Improves factual accuracy
π Perfect for chatbots, internal knowledge bases, support tools, and search assistants.
High-Level Architecture of a RAG System
User Query
β
Embedding Model
β
FAISS Vector Search
β
Relevant Chunks
β
LLM Prompt Augmentation
β
Final Answer
Key idea: Retrieve first, then generate.
Tech Stack & Prerequisites
Core Stack
- Python 3.9+
- FAISS β Vector similarity search
- Sentence Transformers β Text embeddings
- OpenAI / Any LLM API β Answer generation
You Should Know
- Basic Python
- REST APIs
- Vector embeddings (conceptually)
Step 1: Installing Dependencies
bash
pip install faiss-cpu sentence-transformers openai tiktoken
π‘ Tip:
Usefaiss-gpuif youβre running on CUDA for large-scale datasets.
Step 2: Preparing and Chunking Documents
LLMs work better with small, meaningful chunks.
python
def chunk_text(text, chunk_size=500, overlap=50):
chunks = []
start = 0
while start < len(text):
end = start + chunk_size
chunks.append(text[start:end])
start += chunk_size - overlap
return chunks
Why chunking matters
- Improves retrieval precision
- Prevents token overflow
- Enables semantic search
Step 3: Generating Embeddings
Weβll use sentence-transformers.
python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("all-MiniLM-L6-v2")
embeddings = model.encode(chunks, convert_to_numpy=True)
β Fast
β Lightweight
β Production-friendly
Step 4: Storing Vectors in FAISS
python
import faiss
import numpy as np
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(embeddings)
print("Total vectors indexed:", index.ntotal)
Why FAISS?
- Extremely fast similarity search
- Scales to millions of vectors
- Battle-tested in production systems
Step 5: Retrieving Relevant Context
python
def retrieve_context(query, top_k=3):
query_embedding = model.encode([query])
distances, indices = index.search(query_embedding, top_k)
return [chunks[i] for i in indices[0]]
π This step is the heart of RAG.
Step 6: Augmenting Prompts & Querying the LLM
python
import openai
def generate_answer(query):
context = retrieve_context(query)
prompt = f"""
Use the following context to answer the question:
Context:
{''.join(context)}
Question:
{query}
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "user", "content": prompt}],
temperature=0.2
)
return response.choices[0].message.content
Prompt Engineering Tips
- Keep temperature low for factual answers
- Always label Context clearly
- Avoid injecting irrelevant chunks
Real-World Use Cases
β
Internal documentation assistant
β
Customer support chatbot
β
Codebase Q&A system
β
Legal or medical document search
β
Product recommendation engines
Common Developer Questions (FAQ)
β Why not just fine-tune the LLM?
- Fine-tuning is expensive
- RAG allows real-time updates
- No retraining needed when data changes
β How many chunks should I retrieve?
- Usually 3β5
- More chunks = more tokens + noise
β Can I store metadata?
Yes. Use a parallel structure:
python
metadata = {index_id: {"source": "doc1.txt"}}
β Is FAISS production-ready?
Absolutely. Used at Meta, Amazon, and large-scale AI systems.
Related Tools & Libraries
- FAISS β Vector similarity search
- ChromaDB β Managed vector DB
- Pinecone β Fully hosted vector search
- Weaviate β Graph + vector DB
- LangChain β RAG orchestration
- LlamaIndex β Document indexing framework
Conclusion & Next Steps
Youβve now built a fully working RAG system using FAISS:
- Semantic search β
- Context-aware generation β
- Scalable architecture β
π Next Improvements
- Add document loaders (PDF, HTML)
- Introduce hybrid search (BM25 + vectors)
- Cache embeddings
- Add streaming responses
π Follow me for more dev tutorials on AI, LLMs, and system design.
If you found this useful, drop a β€οΈ or comment on Dev.to!
Top comments (0)