What will be scraped
How university filtering works
| Search engine operators | Explanation | Search query |
|---|---|---|
Label: label:<keyword>
|
Label is a search keyword | label:computer_vision |
Double-quotes: ""
|
Specific <university name> search |
label:computer_vision "Michigan State University" |
Pipe operator OR
|
<univ. name> OR <univ. abbrivation name>
|
label:computer_vision "Michigan State University" OR "U.Michigan" |
Prerequisites
Basic knowledge scraping with CSS selectors
CSS selectors declare which part of the markup a style applies to thus allowing to extract data from matching tags and attributes.
If you haven't scraped with CSS selectors, there's a dedicated blog post of mine about how to use CSS selectors when web-scraping that covers what it is, pros and cons, and why they're matter from a web-scraping perspective.
Separate virtual environment
If you're on Linux:
python -m venv env && source env/bin/activate
If you're on Windows and using Git Bash:
python -m venv env && source env/Scripts/activate
If you didn't work with a virtual environment before, have a look at the dedicated Python virtual environments tutorial using Virtualenv and Poetry blog post of mine to get familiar.
In short, it's a thing that creates an independent set of installed libraries including different Python versions that can coexist with each other at the same system thus preventing libraries or Python version conflicts.
📌Note: this is not a strict requirement for this blog post.
Install libraries:
pip install requests, parsel, google-search-results
Reduce the chance of being blocked
There's a chance that a request might be blocked. Have a look at how to reduce the chance of being blocked while web-scraping, there are eleven methods to bypass blocks from most websites.
Full Code
import requests, re, json
from parsel import Selector
def scrape_all_authors_from_university(label: str, university_name: str):
params = {
"view_op": "search_authors", # author results
"mauthors": f'label:{label} "{university_name}"', # search query
"hl": "en", # language
"astart": 0 # page number
}
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.87 Safari/537.36",
}
profile_results = []
profiles_is_present = True
while profiles_is_present:
html = requests.get("https://scholar.google.com/citations", params=params, headers=headers, timeout=30)
select = Selector(html.text)
print(f"extracting authors at page #{params['astart']}.")
for profile in select.css(".gs_ai_chpr"):
name = profile.css(".gs_ai_name a::text").get()
link = f'https://scholar.google.com{profile.css(".gs_ai_name a::attr(href)").get()}'
affiliations = profile.css(".gs_ai_aff").xpath('normalize-space()').get()
email = profile.css(".gs_ai_eml::text").get()
cited_by = profile.css(".gs_ai_cby::text").get() # Cited by 17143 -> 17143
interests = profile.css(".gs_ai_one_int::text").getall()
profile_results.append({
"profile_name": name,
"profile_link": link,
"profile_affiliations": affiliations,
"profile_email": email,
"profile_city_by_count": cited_by,
"profile_interests": interests
})
# if next page token is present -> update next page token and increment 10 to get the next page
if select.css("button.gs_btnPR::attr(onclick)").get():
# https://regex101.com/r/e0mq0C/1
params["after_author"] = re.search(r"after_author\\x3d(.*)\\x26", select.css("button.gs_btnPR::attr(onclick)").get()).group(1) # -> XB0HAMS9__8J
params["astart"] += 10
else:
profiles_is_present = False
return profile_results
print(json.dumps(scrape_all_authors_from_university(label="biology", university_name="Michigan University"), indent=2))
Code Explanation
Import libraries:
import requests, re, json
from parsel import Selector
| Library | Explanation |
|---|---|
requests |
to make a request. |
re |
to match parts of HTML via regular expression. |
json |
to make pretty printing, in this case. |
parsel |
to extract and remove data from HTML and XML documents. |
Define a function:
def scrape_all_authors_from_university(label: str, university_name: str):
# further code
| Code | Explanation |
|---|---|
label: str, university_name: str |
parameter annotations which tells that label and university_name should be a str
|
Create search query params, request headers and make a request:
# https://docs.python-requests.org/en/master/user/quickstart/#passing-parameters-in-urls
params = {
"view_op": "search_authors", # author results
"mauthors": f'label:{label} "{university_name}"', # search query
"hl": "en", # language
"astart": 0 # page number
}
# https://docs.python-requests.org/en/master/user/quickstart/#custom-headers
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.87 Safari/537.36",
}
| Code | Explanation |
|---|---|
User-Agent |
to pretend that it's a "real" user sends a request, not a bot or a script. |
Create temporary list to store extracted data:
profile_results = []
Create a while loop:
profiles_is_present = True
while profiles_is_present:
# further code..
Make a request and pass URL params and headers:
html = requests.get("https://scholar.google.com/citations", params=params, headers=headers, timeout=30)
select = Selector(html.text)
| Code | Explanation |
|---|---|
timeout=30 |
to tell requests to stop waiting for response after 30 seconds. |
Selector() |
like BeautifulSoup() object, if you used it before. |
Extract the data:
for profile in select.css(".gs_ai_chpr"):
name = profile.css(".gs_ai_name a::text").get()
link = f'https://scholar.google.com{profile.css(".gs_ai_name a::attr(href)").get()}'
affiliations = profile.css(".gs_ai_aff").xpath('normalize-space()').get()
email = profile.css(".gs_ai_eml::text").get()
cited_by = profile.css(".gs_ai_cby::text").get() # Cited by 17143 -> 17143
interests = profile.css(".gs_ai_one_int::text").getall()
| Code | Explanation |
|---|---|
::text or ::attr(<attribute_name>)
|
parsel pseudo-element to grab the text or attributes out of the element node, and get() will grab the actual data. |
xpath('normalize-space()') |
to grab blank next child nodes. |
getall() |
to return al list of all matches. |
Append extracted data as to temporary list as dictionary:
profile_results.append({
"profile_name": name,
"profile_link": link,
"profile_affiliations": affiliations,
"profile_email": email,
"profile_city_by_count": cited_by,
"profile_interests": interests
})
Check if the next page token is present:
# if next page token is present -> update next page token and increment 10 to get the next page
if select.css("button.gs_btnPR::attr(onclick)").get():
# https://regex101.com/r/e0mq0C/1
params["after_author"] = re.search(r"after_author\\x3d(.*)\\x26", select.css("button.gs_btnPR::attr(onclick)").get()).group(1) # -> XB0HAMS9__8J
params["astart"] += 10
else:
profiles_is_present = False
| Code | Explanation |
|---|---|
re.search() |
to search next page token via regular expression. |
params["astart"] += 10 |
to increment query parameter to a next page. |
Return and print the data:
return profile_results
print(json.dumps(scrape_all_authors_from_university(label="biology", university_name="Michigan University"), indent=2))
Part of the output:
[
{
"profile_name": "Richard McCabe",
"profile_link": "https://scholar.google.com/citations?hl=en&user=EL414mgAAAAJ",
"profile_affiliations": "Central Michigan University",
"profile_email": "Verified email at cmich.edu",
"profile_city_by_count": "992",
"profile_interests": [
"Biology",
"Physiology",
"Pathophysiology"
]
}, ... other profiles
]
SerpApi Solution
Alternatively, you can achieve the same by using Google Scholar Profiles API from SerpApi.
The difference is that there's no need to create the parser and maintain it, figure out how to bypass blocks from search engines and how to scale it.
Example code to integrate to achieve almost the same as in the parsel example:
import os
from urllib.parse import urlsplit, parse_qsl
from serpapi import GoogleSearch
def serpapi_scrape_all_authors_from_university(label: str, university_name: str):
params = {
"api_key": os.getenv("API_KEY"), # SerpApi API key
"engine": "google_scholar_profiles", # profile results search engine
"mauthors": f'label:{label} "{university_name}"' # search query
}
search = GoogleSearch(params)
profile_results_data = []
profiles_is_present = True
while profiles_is_present:
profile_results = search.get_dict()
for profile in profile_results["profiles"]:
thumbnail = profile["thumbnail"]
name = profile["name"]
link = profile["link"]
author_id = profile["author_id"]
affiliations = profile["affiliations"]
email = profile.get("email")
cited_by = profile.get("cited_by")
interests = profile.get("interests")
profile_results_data.append({
"thumbnail": thumbnail,
"name": name,
"link": link,
"author_id": author_id,
"email": email,
"affiliations": affiliations,
"cited_by": cited_by,
"interests": interests
})
if "next" in profile_results.get("serpapi_pagination", {}):
# splits URL in parts as a dict() and update search "params" variable to a new page that will be passed to GoogleSearch()
search.params_dict.update(dict(parse_qsl(urlsplit(profile_results.get("serpapi_pagination").get("next")).query)))
else:
profiles_is_present = False
return profile_results_data
print(json.dumps(serpapi_scrape_all_authors_from_university(label="biology", university_name="Michigan University"), indent=2))
Import libraries:
import os
from urllib.parse import urlsplit, parse_qsl
from serpapi import GoogleSearch
| Code | Explanation |
|---|---|
os |
to access environment variable key. |
urllib |
to split URL in parts and pass new page data to GoogleSearch()
|
Define a function with argument annotations:
def serpapi_scrape_all_authors_from_university(label: str, university_name: str):
# further code
Create search parameters and pass them to the search:
params = {
"api_key": os.getenv("API_KEY"), # SerpApi API key
"engine": "google_scholar_profiles", # profile results search engine
"mauthors": f'label:{label} "{university_name}"' # search query
}
search = GoogleSearch(params) # where data extraction happens
Create a temporary list where all the extracted data will be stored:
profile_results_data = []
Create a while loop:
profiles_is_present = True
while profiles_is_present:
profile_results = search.get_dict() # JSON converted to Python dictionary
# further code..
| Code | Explanation |
|---|---|
search.get_dict() |
needs to be in the while loop because after each while iteration search parameters will be updated. If it will be outside while loop, the same search parameters (token ID) will be applying over and over again. |
Iterate over profile results:
for profile in profile_results["profiles"]:
print(f'Currently extracting {profile["name"]} with {profile["author_id"]} ID.')
thumbnail = profile["thumbnail"]
name = profile["name"]
link = profile["link"]
author_id = profile["author_id"]
affiliations = profile["affiliations"]
email = profile.get("email")
cited_by = profile.get("cited_by")
interests = profile.get("interests")
Append the extracted data to temporary list:
profile_results_data.append({
"thumbnail": thumbnail,
"name": name,
"link": link,
"author_id": author_id,
"email": email,
"affiliations": affiliations,
"cited_by": cited_by,
"interests": interests
})
Check if next page token is present:
if "next" in profile_results.get("serpapi_pagination", {}):
# splits URL in parts as a dict() and update search "params" variable to a new page that will be passed to GoogleSearch()
search.params_dict.update(dict(parse_qsl(urlsplit(profile_results.get("serpapi_pagination").get("next")).query)))
else:
profiles_is_present = False
return profile_results_data
Print extracted data:
print(json.dumps(serpapi_scrape_all_profiles_from_university(label="Deep_Learning", university_name="Harvard University"), indent=2))
Part of the output:
[
{
"thumbnail": "https://scholar.googleusercontent.com/citations?view_op=small_photo&user=EL414mgAAAAJ&citpid=3",
"name": "Richard McCabe",
"link": "https://scholar.google.com/citations?hl=en&user=EL414mgAAAAJ",
"author_id": "EL414mgAAAAJ",
"email": "Verified email at cmich.edu",
"affiliations": "Central Michigan University",
"cited_by": 992,
"interests": [
{
"title": "Biology",
"serpapi_link": "https://serpapi.com/search.json?engine=google_scholar_profiles&hl=en&mauthors=label%3Abiology",
"link": "https://scholar.google.com/citations?hl=en&view_op=search_authors&mauthors=label:biology"
},
{
"title": "Physiology",
"serpapi_link": "https://serpapi.com/search.json?engine=google_scholar_profiles&hl=en&mauthors=label%3Aphysiology",
"link": "https://scholar.google.com/citations?hl=en&view_op=search_authors&mauthors=label:physiology"
},
{
"title": "Pathophysiology",
"serpapi_link": "https://serpapi.com/search.json?engine=google_scholar_profiles&hl=en&mauthors=label%3Apathophysiology",
"link": "https://scholar.google.com/citations?hl=en&view_op=search_authors&mauthors=label:pathophysiology"
}
]
}, ... other profiles results
]
Links
Add a Feature Request💫 or a Bug🐞


Top comments (6)
Hello Dmitriy,
Does it mean that I am blocked if I start to have the following output after it initially worked for a while?
""""
extracting authors at page #0.
[]
""""
Another question is:
"""
params["astart"] += 10 to increment query parameter to a next page.
"""
Why "10"? I tried "params["astart"] += 1". I seems nothing changed.
It seems it won't change anything if I change the initial "params["astart"] = 0" to "params["astart"] = 10".
Can you please explain this a little bit more? Thank you!
Being blocked
Yes, such output could be because your request is being blocked or something similar:
To see what's the problem, you can
printrequeststextoutput to see what will be returned from the HTML:You can copy the whole HTML output and paste it to some HTML online previewer if you don't want to read the output in the terminal.
Next page query parameter
It's 10 because this is how Google behaves. If you try to click on the next page arrow button yourself and track the
astartparameter value in your browser, you would see that it increments a 10 after you click on the next page button.It's my bad because I forget to add explanation about
after_authorquery parameter.This parameter contains next page token value, for example
XB0HAMS9__8Jand being used in combination withastartparameter.astartdon't affect anything as you said withoutafter_author.Example
If you look in your browser URL, when you're on the first page, URL would look something like this:
When you click next page arrow button (2nd page), your URL would be like this:
Where
after_author=i5ojAdH5__8Jis a token for the next page (3rd in this case) andastart=10tracks current page, i.e 2nd page in this case.📌Note: you might think that
astartis useless because why just don't parseafter_authornext page token value and call it a good? You can do it but your page order will mess up so results could be inconsistent:11-20will become1-10if you just useafter_authornext page token for the 3rd page in this case.To sum up
after_author(next page token) parameter should (must) be us in combination withastartparameter that tracks current page.If you was using the same search query I've provided i.e
label:biology "Michigan University"then yes, there's nothing that will be changed because there's only one page of user profiles so changing it's value will lead to nothing 🙂Let me know if it answers your questions 🎈
Thank you for the detailed response. It helps a lot!
Of course 🤗 Ask me more whenever you need.
Another way to ask me is by using #AskSerpApi hashtag on Twitter. However it's more about SerpApi usage.
Hello Dmitriy,
I believe there is a bug in " cited_by = re.search(r"\d+", profile.xpath('//div[@class="gs_ai_cby"]').get()).group() # Cited by 17143 -> 17143".
The numbers of citations for a page are the same.
Hi, Jiefeng 🙂 Thank you for your notice, there was indeed a bug 🐛 I've updated the code.
Working solution would be to use
css()with::text(grabs text value) methods instead:re.search(r"\d+", profile.css(".gs_ai_cby::text").get()).group()Output from the terminal: