DEV Community

hallo word
hallo word

Posted on

https://rb.gy/l2hewa

TransformerモデルとTensorFlowを用いた自然言語処理(NLP)

はじめに

Transformerは、自然言語処理(NLP)における画期的なモデルであり、BERTやGPTなどの多くの最新AIモデルの基盤となっています。本記事では、TensorFlowを使用してTransformerモデルを構築し、テキスト分類タスクを実装する方法を紹介します。

Transformerの基本概念

Transformerは、以下の主要なコンポーネントから構成されます。

  • Self-Attention: 文中の単語同士の関係を捉えるメカニズム
  • Positional Encoding: 単語の順序情報をモデルに組み込む技術
  • Multi-Head Attention: 異なる視点からテキストを処理
  • Feed Forward Network: 非線形変換を行う層

TensorFlowでのTransformerの実装

まず、Transformerの基本構造を作成します。

import tensorflow as tf
from tensorflow.keras.layers import Dense, LayerNormalization, Dropout

class MultiHeadSelfAttention(tf.keras.layers.Layer):
    def __init__(self, d_model, num_heads):
        super(MultiHeadSelfAttention, self).__init__()
        self.num_heads = num_heads
        self.d_model = d_model
        assert d_model % num_heads == 0
        self.depth = d_model // num_heads
        self.wq = Dense(d_model)
        self.wk = Dense(d_model)
        self.wv = Dense(d_model)
        self.dense = Dense(d_model)

    def call(self, inputs):
        batch_size = tf.shape(inputs)[0]
        q = self.wq(inputs)
        k = self.wk(inputs)
        v = self.wv(inputs)
        q = tf.reshape(q, (batch_size, -1, self.num_heads, self.depth))
        k = tf.reshape(k, (batch_size, -1, self.num_heads, self.depth))
        v = tf.reshape(v, (batch_size, -1, self.num_heads, self.depth))
        scores = tf.matmul(q, k, transpose_b=True) / tf.math.sqrt(float(self.depth))
        weights = tf.nn.softmax(scores, axis=-1)
        output = tf.matmul(weights, v)
        output = tf.reshape(output, (batch_size, -1, self.d_model))
        return self.dense(output)
Enter fullscreen mode Exit fullscreen mode

Transformerエンコーダの実装

次に、Transformerエンコーダを構築します。

class TransformerEncoderLayer(tf.keras.layers.Layer):
    def __init__(self, d_model, num_heads, dff, rate=0.1):
        super(TransformerEncoderLayer, self).__init__()
        self.mha = MultiHeadSelfAttention(d_model, num_heads)
        self.ffn = tf.keras.Sequential([
            Dense(dff, activation='relu'),
            Dense(d_model)
        ])
        self.norm1 = LayerNormalization(epsilon=1e-6)
        self.norm2 = LayerNormalization(epsilon=1e-6)
        self.dropout1 = Dropout(rate)
        self.dropout2 = Dropout(rate)

    def call(self, x):
        attn_output = self.mha(x)
        attn_output = self.dropout1(attn_output)
        out1 = self.norm1(x + attn_output)
        ffn_output = self.ffn(out1)
        ffn_output = self.dropout2(ffn_output)
        return self.norm2(out1 + ffn_output)
Enter fullscreen mode Exit fullscreen mode

テキスト分類タスクへの応用

Transformerエンコーダを活用し、テキスト分類モデルを構築します。

class TextClassifier(tf.keras.Model):
    def __init__(self, vocab_size, d_model, num_heads, dff, num_classes):
        super(TextClassifier, self).__init__()
        self.embedding = tf.keras.layers.Embedding(vocab_size, d_model)
        self.encoder = TransformerEncoderLayer(d_model, num_heads, dff)
        self.global_avg_pool = tf.keras.layers.GlobalAveragePooling1D()
        self.classifier = Dense(num_classes, activation='softmax')

    def call(self, x):
        x = self.embedding(x)
        x = self.encoder(x)
        x = self.global_avg_pool(x)
        return self.classifier(x)
Enter fullscreen mode Exit fullscreen mode

まとめ

TensorFlowを使用してTransformerの基本的な構造を実装し、テキスト分類タスクへの応用を紹介しました。BERTやGPTのような高度なモデルも、この基本概念を応用することで理解しやすくなります。

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

Top comments (0)

Cloudinary image

Zoom pan, gen fill, restore, overlay, upscale, crop, resize...

Chain advanced transformations through a set of image and video APIs while optimizing assets by 90%.

Explore

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay