*Memos:
- My post explains Convolutional Layer.
- My post explains Conv1d().
- My post explains Conv3d().
- My post explains manual_seed().
- My post explains requires_grad.
Conv2d() can get the 3D or 4D tensor of the zero or more elements computed by 2D convolution from the 3D or 4D tensor of zero or more elements as shown below:
*Memos:
- The 1st argument for initialization is
in_channels(Required-Type:float). *It must be0 <= x. - The 2nd argument for initialization is
out_channels(Required-Type:float). *It must be1 <= x. - The 3rd argument for initialization is
kernel_size(Required-Type:intortupleorlistofint). *It must be1 <= x. - The 4th argument for initialization is
stride(Optional-Default:1-Type:intortupleorlistofint). *It must be1 <= x. - The 5th argument for initialization is
padding(Optional-Default:0-Type:int,strortupleorlistofint): *Memos:- It must be
0 <= xif notstr. - It must be either
'valid'or'same'forstr.
- It must be
- The 6th argument for initialization is
dilation(Optional-Default:1-Type:int,tupleorlistofint). *It must be1 <= x. - The 7th argument for initialization is
groups(Optional-Default:1-Type:int). *It must be1 <= x. - The 8th argument for initialization is
bias(Optional-Default:True-Type:bool). *My post explainsbiasargument. - The 9th argument for initialization is
padding_mode(Optional-Default:'zeros'-Type:str). *'zeros','reflect','replicate'or'circular'can be selected. - The 10th argument for initialization is
device(Optional-Default:None-Type:str,intor device()): *Memos:- If it's
None, get_default_device() is used. *My post explainsget_default_device()and set_default_device(). -
device=can be omitted. -
My post explains
deviceargument.
- If it's
- The 11th argument for initialization is
dtype(Optional-Default:None-Type:dtype): *Memos:- If it's
None, get_default_dtype() is used. *My post explainsget_default_dtype()and set_default_dtype(). -
dtype=can be omitted. -
My post explains
dtypeargument.
- If it's
- The 1st argument is
input(Required-Type:tensoroffloatorcomplex): *Memos:- It must be the 3D or 4D tensor of zero or more elements.
- The number of the elements of the 3rd deepest dimension must be same as
in_channels. - Its
deviceanddtypemust be same asConv2d()'s. -
complexmust be set todtypeofConv2d()to use acomplextensor. - The tensor's
requires_gradwhich isFalseby default is set toTruebyConv2d().
-
conv2d1.deviceandconv2d1.dtypedon't work.
import torch
from torch import nn
tensor1 = torch.tensor([[[8., -3., 0., 1., 5., -2.]]])
tensor1.requires_grad
# False
torch.manual_seed(42)
conv2d1 = nn.Conv2d(in_channels=1, out_channels=3, kernel_size=1)
tensor2 = conv2d1(input=tensor1)
tensor2
# tensor([[[7.0349, -1.3750, 0.9186, 1.6831, 4.7413, -0.6105]],
# [[6.4210, -2.7091, -0.2191, 0.6109, 3.9309, -1.8791]],
# [[-1.6724, 0.9046, 0.2018, -0.0325, -0.9696, 0.6703]]],
# grad_fn=<SqueezeBackward1>)
tensor2.requires_grad
# True
conv2d1
# Conv2d(1, 3, kernel_size=(1, 1), stride=(1, 1))
conv2d1.in_channels
# 1
conv2d1.out_channels
# 3
conv2d1.kernel_size
# (1, 1)
conv2d1.stride
# (1, 1)
conv2d1.padding
# (0, 0)
conv2d1.dilation
# (1, 1)
conv2d1.groups
# 1
conv2d1.bias
# Parameter containing:
# tensor([0.9186, -0.2191, 0.2018], requires_grad=True)
conv2d1.padding_mode
# 'zeros'
conv2d1.weight
# Parameter containing:
# tensor([[[[0.7645]]], [[[0.8300]]], [[[-0.2343]]]], requires_grad=True)
torch.manual_seed(42)
conv2d2 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=1)
conv2d2(input=tensor2)
# tensor([[[5.9849, -2.4511, -0.1504, 0.6165, 3.6841, -1.6842]],
# [[3.2258, 0.2207, 1.0403, 1.3134, 2.4062, 0.4939]],
# [[-0.5434, 0.0364, -0.1217, -0.1744, -0.3853, -0.0163]]],
# grad_fn=<SqueezeBackward1>)
torch.manual_seed(42)
conv2d = nn.Conv2d(in_channels=1, out_channels=3, kernel_size=1, stride=1,
padding=0, dilation=1, groups=1, bias=True,
padding_mode='zeros', device=None, dtype=None)
conv2d(input=tensor1)
# tensor([[[7.0349, -1.3750, 0.9186, 1.6831, 4.7413, -0.6105]],
# [[6.4210, -2.7091, -0.2191, 0.6109, 3.9309, -1.8791]],
# [[-1.6724, 0.9046, 0.2018, -0.0325, -0.9696, 0.6703]]],
# grad_fn=<SqueezeBackward1>)
my_tensor = torch.tensor([[[8., -3., 0.],
[1., 5., -2.]]])
torch.manual_seed(42)
conv2d = nn.Conv2d(in_channels=1, out_channels=3, kernel_size=1)
conv2d(input=my_tensor)
# tensor([[[7.0349, -1.3750, 0.9186], [1.6831, 4.7413, -0.6105]],
# [[6.4210, -2.7091, -0.2191], [0.6109, 3.9309, -1.8791]],
# [[-1.6724, 0.9046, 0.2018], [-0.0325, -0.9696, 0.6703]]],
# grad_fn=<SqueezeBackward1>)
my_tensor = torch.tensor([[[8.], [-3.], [0.],
[1.], [5.], [-2.]]])
torch.manual_seed(42)
conv2d = nn.Conv2d(in_channels=1, out_channels=3, kernel_size=1)
conv2d(input=my_tensor)
# tensor([[[7.0349], [-1.3750], [0.9186], [1.6831], [4.7413], [-0.6105]],
# [[6.4210], [-2.7091], [-0.2191], [0.6109], [3.9309], [-1.8791]],
# [[-1.6724], [0.9046], [0.2018], [-0.0325], [-0.9696], [0.6703]]],
# grad_fn=<SqueezeBackward1>)
my_tensor = torch.tensor([[[[8.], [-3.], [0.]],
[[1.], [5.], [-2.]]]])
torch.manual_seed(42)
conv2d = nn.Conv2d(in_channels=2, out_channels=3, kernel_size=1)
conv2d(input=my_tensor)
# tensor([[[[4.5675], [0.9684], [-1.5181]],
# [[-0.2604], [4.1600], [-0.8838]],
# [[-0.4734], [1.8016], [0.3380]]]],
# grad_fn=<ConvolutionBackward0>)
my_tensor = torch.tensor([[[[8.+0.j], [-3.+0.j], [0.+0.j]],
[[1.+0.j], [5.+0.j], [-2.+0.j]]]])
torch.manual_seed(42)
conv2d = nn.Conv2d(in_channels=2, out_channels=3, kernel_size=1,
dtype=torch.complex64)
conv2d(input=my_tensor)
# tensor([[[[4.6816+5.4406j], [-1.9277+1.5828j], [0.8537-1.2033j]],
# [[-1.2427+1.4569j], [-0.9155+1.5485j], [1.0295-0.9304j]],
# [[6.1465-3.9132j], [1.7481+2.3225j], [-0.6841-0.1602j]]]],
# grad_fn=<AddBackward0>)
Top comments (0)