DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

is_floating_point, is_complex and is_nonzero in PyTorch

Buy Me a Coffee

*Memos:

is_floating_point() can check if the 0D or more D tensor of zero or more elements is float type, getting the scalar of a boolean value as shown below:

*Memos:

  • is_floating_point() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
import torch

my_tensor = torch.tensor([])
my_tensor = torch.tensor(5.)
my_tensor = torch.tensor(torch.nan)
my_tensor = torch.tensor(torch.inf)

torch.is_floating_point(input=my_tensor)
my_tensor.is_floating_point()
# True

my_tensor = torch.tensor(8)
my_tensor = torch.tensor(3.+0.j)
my_tensor = torch.tensor(3.+7.j)
my_tensor = torch.tensor(complex(torch.nan, torch.inf))
my_tensor = torch.tensor(True)

torch.is_floating_point(input=my_tensor)
# False

my_tensor = torch.tensor([5., torch.nan, torch.inf])

torch.is_floating_point(input=my_tensor)
# True

my_tensor = torch.tensor([8,
                          5.,
                          torch.nan,
                          torch.inf,
                          3.+0.j,
                          3.+7.j,
                          complex(torch.nan, torch.inf),
                          True])
my_tensor = torch.tensor([[8,
                           5.,
                           torch.nan,
                           torch.inf],
                          [3.+0.j,
                           3.+7.j,
                           complex(torch.nan, torch.inf),
                           True]])
my_tensor = torch.tensor([[[8,
                            5.],
                           [torch.nan,
                            torch.inf]],
                          [[3.+0.j,
                            3.+7.j],
                           [complex(torch.nan, torch.inf),
                            True]]])
torch.is_floating_point(input=my_tensor)
# False
Enter fullscreen mode Exit fullscreen mode

is_complex() can check if the 0D or more D tensor of zero or more elements is complex type, getting the scalar of a boolean value as shown below:

*Memos:

  • is_complex() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
import torch

my_tensor = torch.tensor(3.+0.j)
my_tensor = torch.tensor(3.+7.j)
my_tensor = torch.tensor(complex(torch.nan, torch.inf))

torch.is_complex(input=my_tensor)
my_tensor.is_complex()
# True

my_tensor = torch.tensor([])
my_tensor = torch.tensor(8)
my_tensor = torch.tensor(5.)
my_tensor = torch.tensor(torch.nan)
my_tensor = torch.tensor(torch.inf)
my_tensor = torch.tensor(True)

torch.is_complex(input=my_tensor)
# False

my_tensor = torch.tensor([3.+0.j, 3.+7.j, complex(torch.nan, torch.inf)])

torch.is_complex(input=my_tensor)
# True

my_tensor = torch.tensor([8,
                          5.,
                          torch.nan,
                          torch.inf,
                          3.+0.j,
                          3.+7.j,
                          complex(torch.nan, torch.inf),
                          True])
my_tensor = torch.tensor([[8,
                           5.,
                           torch.nan,
                           torch.inf],
                          [3.+0.j,
                           3.+7.j,
                           complex(torch.nan, torch.inf),
                           True]])
my_tensor = torch.tensor([[[8,
                            5.],
                           [torch.nan,
                            torch.inf]],
                          [[3.+0.j,
                            3.+7.j],
                           [complex(torch.nan, torch.inf),
                            True]]])
torch.is_complex(input=my_tensor)
# True
Enter fullscreen mode Exit fullscreen mode

is_nonzero() can check if the 0D or more D tensor of only one element is a nonzero, getting the scalar of a boolean value as shown below:

*Memos:

  • is_nonzero() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • There must be only one element in a tensor.
import torch

my_tensor = torch.tensor(8)
my_tensor = torch.tensor(5.)
my_tensor = torch.tensor([torch.nan])
my_tensor = torch.tensor([torch.inf])
my_tensor = torch.tensor([[3.+0.j]])
my_tensor = torch.tensor([[3.+7.j]])
my_tensor = torch.tensor([[[complex(torch.nan, torch.inf)]]])
my_tensor = torch.tensor([[[True]]])

torch.is_nonzero(input=my_tensor)
my_tensor.is_nonzero()
# True

my_tensor = torch.tensor(0)
my_tensor = torch.tensor([0.])
my_tensor = torch.tensor([[0.+0.j]])
my_tensor = torch.tensor([[[False]]])

torch.is_nonzero(input=my_tensor)
# False
Enter fullscreen mode Exit fullscreen mode

Top comments (0)

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay