*Memos:
- My post explains isreal(), isnan() and isfinite().
- My post explains is_floating_point(), is_complex() and is_nonzero().
- My post explains isin().
-
My post explains
torch.nan
andtorch.inf
.
isinf() can check if the zero or more elements of a 0D or more D tensor are infinity, getting the 0D or more D tensor of zero or more boolean values as shown below:
*Memos:
-
isinf()
can be used with torch or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
,complex
orbool
).
import torch
my_tensor = torch.tensor([8,
5.,
torch.nan,
torch.inf,
3.+0.j,
3.+7.j,
complex(torch.nan, torch.inf),
True])
torch.isinf(input=my_tensor)
my_tensor.isinf()
# tensor([False, False, False, True, False, False, True, False])
my_tensor = torch.tensor([[8,
5.,
torch.nan,
torch.inf],
[3.+0.j,
3.+7.j,
complex(torch.nan, torch.inf),
True]])
torch.isinf(input=my_tensor)
# tensor([[False, False, False, True],
# [False, False, True, False]])
my_tensor = torch.tensor([[[8,
5.],
[torch.nan,
torch.inf]],
[[3.+0.j,
3.+7.j],
[complex(torch.nan, torch.inf),
True]]])
torch.isinf(input=my_tensor)
# tensor([[[False, False], [False, True]],
# [[False, False], [True, False]]])
isposinf() can if check the zero or more elements of a 0D or more D tensor are positive infinity, getting the 0D or more D tensor of zero or more boolean values as shown below:
*Memos:
-
isposinf()
can be used withtorch
or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
orbool
). - There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. -
My post explains
out
argument.
-
import torch
my_tensor = torch.tensor([8,
5.,
torch.nan,
torch.inf,
3.,
3.7,
-torch.inf,
True])
torch.isposinf(input=my_tensor)
my_tensor.isposinf()
# tensor([False, False, False, True, False, False, False, False])
my_tensor = torch.tensor([[8,
5.,
torch.nan,
torch.inf],
[3.,
3.7,
-torch.inf,
True]])
torch.isposinf(input=my_tensor)
# tensor([[False, False, False, True],
# [False, False, False, False]])
my_tensor = torch.tensor([[[8,
5.],
[torch.nan,
torch.inf]],
[[3.,
3.7],
[-torch.inf,
True]]])
torch.isposinf(input=my_tensor)
# tensor([[[False, False], [False, True]],
# [[False, False], [False, False]]])
isneginf() can if check the zero or more elements of a 0D or more D tensor are negative infinity, getting the 0D or more D tensor of zero or more boolean values as shown below:
*Memos:
-
isneginf()
can be used withtorch
or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
orbool
). - There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
): *Memos:-
out=
must be used. -
My post explains
out
argument.
-
import torch
my_tensor = torch.tensor([8,
5.,
torch.nan,
torch.inf,
3.,
3.7,
-torch.inf,
True])
torch.isneginf(input=my_tensor)
my_tensor.isneginf()
# tensor([False, False, False, False, False, False, True, False])
my_tensor = torch.tensor([[8,
5.,
torch.nan,
torch.inf],
[3.,
3.7,
-torch.inf,
True]])
torch.isneginf(input=my_tensor)
# tensor([[False, False, False, False],
# [False, False, True, False]])
my_tensor = torch.tensor([[[8,
5.],
[torch.nan,
torch.inf]],
[[3.,
3.7],
[-torch.inf,
True]]])
torch.isneginf(input=my_tensor)
# tensor([[[False, False], [False, False]],
# [[False, False], [True, False]]])
Top comments (0)