DEV Community

Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito)

Posted on • Edited on

isinf, isposinf and isneginf in PyTorch

Buy Me a Coffee

*Memos:

isinf() can check if the zero or more elements of a 0D or more D tensor are infinity, getting the 0D or more D tensor of zero or more boolean values as shown below:

*Memos:

  • isinf() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
import torch

my_tensor = torch.tensor([8,
                          5.,
                          torch.nan,
                          torch.inf,
                          3.+0.j,
                          3.+7.j,
                          complex(torch.nan, torch.inf),
                          True])
torch.isinf(input=my_tensor)
my_tensor.isinf()
# tensor([False, False, False, True, False, False, True, False])

my_tensor = torch.tensor([[8,
                           5.,
                           torch.nan,
                           torch.inf],
                          [3.+0.j,
                           3.+7.j,
                           complex(torch.nan, torch.inf),
                           True]])
torch.isinf(input=my_tensor)
# tensor([[False, False, False, True],
#         [False, False, True, False]])

my_tensor = torch.tensor([[[8,
                            5.],
                           [torch.nan,
                            torch.inf]],
                          [[3.+0.j,
                            3.+7.j],
                           [complex(torch.nan, torch.inf),
                            True]]])
torch.isinf(input=my_tensor)
# tensor([[[False, False], [False, True]],
#         [[False, False], [True, False]]])
Enter fullscreen mode Exit fullscreen mode

isposinf() can if check the zero or more elements of a 0D or more D tensor are positive infinity, getting the 0D or more D tensor of zero or more boolean values as shown below:

*Memos:

  • isposinf() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float or bool).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
import torch

my_tensor = torch.tensor([8,
                          5.,
                          torch.nan,
                          torch.inf,
                          3.,
                          3.7,
                          -torch.inf,
                          True])
torch.isposinf(input=my_tensor)
my_tensor.isposinf()
# tensor([False, False, False, True, False, False, False, False])

my_tensor = torch.tensor([[8,
                           5.,
                           torch.nan,
                           torch.inf],
                          [3.,
                           3.7,
                           -torch.inf,
                           True]])
torch.isposinf(input=my_tensor)
# tensor([[False, False, False,  True],
#         [False, False, False, False]])

my_tensor = torch.tensor([[[8,
                            5.],
                           [torch.nan,
                            torch.inf]],
                          [[3.,
                            3.7],
                           [-torch.inf,
                            True]]])
torch.isposinf(input=my_tensor)
# tensor([[[False, False], [False, True]],
#         [[False, False], [False, False]]])
Enter fullscreen mode Exit fullscreen mode

isneginf() can if check the zero or more elements of a 0D or more D tensor are negative infinity, getting the 0D or more D tensor of zero or more boolean values as shown below:

*Memos:

  • isneginf() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float or bool).
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
import torch

my_tensor = torch.tensor([8,
                          5.,
                          torch.nan,
                          torch.inf,
                          3.,
                          3.7,
                          -torch.inf,
                          True])
torch.isneginf(input=my_tensor)
my_tensor.isneginf()
# tensor([False, False, False, False, False, False, True, False])

my_tensor = torch.tensor([[8,
                           5.,
                           torch.nan,
                           torch.inf],
                          [3.,
                           3.7,
                           -torch.inf,
                           True]])
torch.isneginf(input=my_tensor)
# tensor([[False, False, False, False],
#         [False, False, True, False]])

my_tensor = torch.tensor([[[8,
                            5.],
                           [torch.nan,
                            torch.inf]],
                          [[3.,
                            3.7],
                           [-torch.inf,
                            True]]])
torch.isneginf(input=my_tensor)
# tensor([[[False, False], [False, False]],
#         [[False, False], [True, False]]])
Enter fullscreen mode Exit fullscreen mode

Heroku

This site is built on Heroku

Join the ranks of developers at Salesforce, Airbase, DEV, and more who deploy their mission critical applications on Heroku. Sign up today and launch your first app!

Get Started

Top comments (0)

Billboard image

Create up to 10 Postgres Databases on Neon's free plan.

If you're starting a new project, Neon has got your databases covered. No credit cards. No trials. No getting in your way.

Try Neon for Free →

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay