DEV Community

Kevin
Kevin

Posted on

How I Reduced Kubernetes GPU Monitoring API Calls by 75%

How I Reduced Kubernetes GPU Monitoring API Calls by 75%

Managing GPU resources in large Kubernetes clusters? Your API server probably hates your monitoring queries. Here's how I fixed it.

The Problem

Monitoring 100+ GPU nodes was killing our API server:

  • 3,000+ API requests per minute
  • Query timeouts (5+ seconds)
  • 80% CPU spikes during monitoring
  • 25% infrastructure cost increase

The Issue: Naive Implementation

Most tools do this:

// Wrong: N×M API calls
for _, namespace := range namespaces {
    for _, node := range gpuNodes {
        pods := client.Pods(namespace).List(fieldSelector: node)
        // Process pods...
    }
}
// Result: 50 nodes × 20 namespaces = 1,000 API calls!
Enter fullscreen mode Exit fullscreen mode

The Solution: Smart Batching

Instead, do this:

// Right: 1+M API calls
nodes := client.Nodes().List(labelSelector: "gpu=true") // 1 call

for _, namespace := range namespaces {
    allPods := client.Pods(namespace).List() // M calls
    // Filter client-side for GPU nodes
}
// Result: 1 + 20 = 21 API calls (95% reduction!)
Enter fullscreen mode Exit fullscreen mode

Results

Before: 1,000 API calls, 60 seconds, 400MB memory
After: 21 API calls, 5 seconds, 50MB memory

Performance gains:

  • 97% fewer API calls
  • 90% faster execution
  • 75% less memory usage

Open Source Tool

I built k8s-gpu-analyzer to solve this:

wget https://github.com/Kevinz857/k8s-gpu-analyzer/releases/latest/download/k8s-gpu-analyzer-linux-amd64
chmod +x k8s-gpu-analyzer-linux-amd64
./k8s-gpu-analyzer --node-labels "gpu=true"
Enter fullscreen mode Exit fullscreen mode

Features:

  • Multi-platform binaries
  • Flexible filtering
  • Zero dependencies
  • Production-ready

Key Takeaways

  1. Batch API calls whenever possible
  2. Use server-side filtering (label selectors)
  3. Move computation to client-side
  4. Design for 10x scale from day one

Try It!

GitHub: https://github.com/Kevinz857/k8s-gpu-analyzer

What's your biggest K8s performance challenge? 👇

Top comments (0)

Some comments may only be visible to logged-in visitors. Sign in to view all comments.