AI chatbots don’t have to cost \$\$ to run. If you’re a solo indie dev, student, or just experimenting, you can actually deploy an AI chatbot end-to-end without spending a rupee/dollar — thanks to free hosting platforms.
In this post, we’ll build and deploy a chatbot using Replit, Hugging Face Spaces, and Vercel — three free (or nearly free) hosting platforms that are developer-friendly.
🧩 The Stack We’ll Use
- Frontend: Next.js (React-based, free hosting on Vercel)
- Backend / Bot Logic: Python FastAPI (Replit or Hugging Face Spaces)
- AI Brain: Open-source LLM (like LLaMA-3, Mistral) or API (like Gemini/OpenAI — with free tier)
- Vector DB (Optional): FAISS (in-memory, free to run)
⚡ Option 1: Replit (Easiest for Beginners)
Step 1 — Create the Project
- Go to Replit → New Repl → Choose Python + FastAPI template.
Step 2 — Install Dependencies
pip install fastapi uvicorn openai
Step 3 — Add Bot Code
main.py
from fastapi import FastAPI
import openai
app = FastAPI()
@app.get("/chat")
def chat(query: str):
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo", # Or free-tier Gemini/Open-source model
messages=[{"role": "user", "content": query}]
)
return {"answer": response["choices"][0]["message"]["content"]}
Step 4 — Deploy
- Hit Run in Replit.
- Copy the public URL → it becomes your chatbot API.
⚡ Option 2: Hugging Face Spaces (For Open-Source Models)
Step 1 — Create a Space
- Go to Hugging Face Spaces.
- Click New Space → Choose Gradio or Streamlit template.
Step 2 — Add Requirements
requirements.txt
transformers
gradio
Step 3 — Add Bot Code
app.py
import gradio as gr
from transformers import pipeline
chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct")
def respond(message, history):
result = chatbot(message, max_length=200, do_sample=True)
return result[0]["generated_text"]
demo = gr.ChatInterface(respond)
demo.launch()
Step 4 — Done 🎉
Your chatbot runs in the cloud with a free GPU/CPU (depending on demand).
⚡ Option 3: Vercel (Best for Frontend + API Routes)
Step 1 — Create Next.js App
npx create-next-app chatbot-vercel
Step 2 — Add API Route
/pages/api/chat.js
export default async function handler(req, res) {
const { query } = req.body;
const response = await fetch("https://your-replit-or-hf-api/chat?query=" + query);
const data = await response.json();
res.status(200).json({ answer: data.answer });
}
Step 3 — Frontend UI
/pages/index.js
import { useState } from "react";
export default function Home() {
const [input, setInput] = useState("");
const [chat, setChat] = useState([]);
async function sendMessage() {
const res = await fetch("/api/chat", {
method: "POST",
headers: {"Content-Type":"application/json"},
body: JSON.stringify({ query: input })
});
const data = await res.json();
setChat([...chat, {user: input, bot: data.answer}]);
setInput("");
}
return (
<div>
<h1>AI Chatbot</h1>
<div>
{chat.map((c, i) => (
<p key={i}><b>You:</b> {c.user} <br/> <b>Bot:</b> {c.bot}</p>
))}
</div>
<input value={input} onChange={e => setInput(e.target.value)} />
<button onClick={sendMessage}>Send</button>
</div>
);
}
Step 4 — Deploy to Vercel
- Push to GitHub → Import repo into Vercel.
- Free hosting + free SSL + free CDN 🚀
🎯 Which One Should You Choose?
Platform | Best For | Pros | Cons |
---|---|---|---|
Replit | Beginners, quick backend APIs | 1-click deploy, easy | Limited compute |
Hugging Face | Hosting open-source models | Free GPU/CPU, Gradio | Queues on free tier |
Vercel | Frontend + serverless functions | Scales easily, Next.js ready | No GPU for heavy models |
✨ Final Thoughts
You don’t need AWS bills to experiment with AI. With Replit, Hugging Face Spaces, and Vercel, you can spin up a full chatbot for \$0 — perfect for prototyping, learning, or showcasing your idea.
Once your project grows, you can always migrate to paid hosting. But as a solo dev or indie hacker in 2025, free platforms are your best friend.
Top comments (0)