⬇️ Download the multi-repo starter pack
Inside you’ll find five ready-to-clone frameworks:
- flowml-pytorch-template Minimal FlowML primitives (phases, timelabels) + a tiny demo training loop.
-
flowml/flowml.py→ TimeLabel, Phase enum -
examples/train_demo.py→ prints live phases (Focus/Loop/Stress/…) -
pyproject.tomlwith deps
-
binflow-fastapi-agent-template
FastAPI service for
/events(post/list) to log BINFLOW events (great for local prototyping).
-
app/main.pywithPOST /events,GET /events,GET /health -
docker-compose.yml→uvicorn-gunicorn-fastapicontainer
- binflow-react-dashboard (Vite + React) Dead-simple UI scaffold to visualize recent phase events.
-
src/main.jsxshows a list; wire it to your FastAPI when ready -
npm run devand go
- agentic-postgres-stack (Timescale + pgvector) A Postgres stack with extensions enabled and a PoL events schema preloaded.
-
docker-compose.yml+init/01_extensions.sql+02_schema.sql - Adminer on
http://localhost:8080for quick DB poking
- automation-cli-template (Typer CLI + Rich + Matplotlib) CLI to annotate events with naive phases and render a timeline chart.
-
binflow_cli/app.py→annotate,timelinecommands -
pyproject.tomlwith all deps
How to use (copy–paste quickstart)
A) Spin up the database (with Timescale + pgvector)
cd agentic-postgres-stack
docker compose up -d
# DB: localhost:5432 user: postgres pass: postgres db: binflow
# Adminer: http://localhost:8080
B) Run the FastAPI agent
cd ../binflow-fastapi-agent-template
docker compose up
# API at http://localhost:8000
# Try: curl -X POST http://localhost:8000/events -H "content-type: application/json" \
# -d '{"phase":"Focus","payload":{"note":"hello"}}'
C) Start the React dashboard
cd ../binflow-react-dashboard
npm install
npm run dev
# Open http://localhost:5173 (by default)
# Wire the fetch() to http://localhost:8000/events
D) Try the FlowML toy demo
cd ../flowml-pytorch-template
python -m venv .venv && . .venv/bin/activate
pip install -e .
python examples/train_demo.py
# Watch temporal phases print every step
E) Use the CLI to annotate and plot
cd ../automation-cli-template
python -m venv .venv && . .venv/bin/activate
pip install -e .
# Suppose you have events.jsonl (one JSON per line)
python -m binflow_cli.app annotate events.jsonl phases.jsonl
python -m binflow_cli.app timeline pol_events.csv timeline.png
Suggested “next moves” (so you look dangerous in public)
-
Wire the FastAPI → Postgres: add a
psycopginsert to write/eventsintopol_events. - Point the React dashboard to the API: fetch every 3–5s and draw simple ribbons (phase by time).
- Drop FlowML into a real PyTorch project: adapt your training loop with TimeLabel + phase-aware LR/augments.
- Log PoL from the loop to the DB: unlock leaderboards of “most leveraged” datasets/models/code.
- Open-source it as “binflow-starters” — ask contributors to add adapters (Keras/JAX) and more signals (drift, entropy).
Top comments (0)