π Welcome to your comprehensive, step-by-step journey to become a skilled NLP Engineer ready to tackle real-world challenges β from data handling to advanced LLM fine-tuning and deployment!
β³ Total Duration: Self Study
π§± Skill Levels: Beginner β Expert
π― Final Goal: Real Industry NLP / LLM Engineer
π§© PHASE 1: Data Understanding & File Formats (15 days)
π Learn to handle all types of data formats used in the industry:
Topic | Details |
---|---|
ποΈ Structured files |
.csv , .tsv , .xlsx (pandas, openpyxl) |
π Semi-structured files |
.json , .jsonl , .xml , .yaml
|
π Unstructured text | Raw .txt files, scraped text |
π·οΈ Columnar formats |
.parquet , .avro , .orc (pyarrow, fastparquet, Spark) |
ποΈ Databases | SQL (sqlite3, MySQL, PostgreSQL) + NoSQL (MongoDB, Firebase) |
β‘ Big Data Access | Apache Spark, PySpark (read/write from S3, Hive, HDFS) |
β¨ Bonus:
- Metadata schemas (JSON, XML)
- Schema evolution & backward compatibility (Avro, Parquet)
- Data versioning basics with DVC
π οΈ Mini Project:
Load 10k JSON/XML resumes β clean β convert & store in Parquet β query using PySpark
π§Ή PHASE 2: Text Cleaning & Preprocessing (10β15 days)
π― Master the essential text cleaning pipelines to prepare noisy real-world data:
- Tokenization, normalization, stopword removal
- Regex magic πͺ for pattern matching
- Language detection π and filtering
- Emoji, URL, email handling
- Spelling correction & slang expansion
π§ Tools & Libraries:
spaCy
, nltk
, re
, langdetect
, ftfy
, pyspellchecker
π‘ Pro Tip:
Log discarded rows and language mismatches for audit and reproducibility!
π PHASE 3: Text Vectorization & Feature Engineering (10β12 days)
π Transform raw text into machine-readable features:
- TF-IDF, Bag of Words, N-grams
- Word embeddings: Word2Vec, FastText, GloVe
- Document embeddings: Doc2Vec, Sentence-BERT
- Dimensionality reduction: PCA, SVD
- Metadata features: Text length, language, readability
π οΈ Mini Project:
Build an email classifier combining TF-IDF + sender/subject metadata + RandomForest
π€ PHASE 4: Classical ML for NLP (10β15 days)
π» Learn to train and tune traditional ML models for NLP:
- Naive Bayes, Logistic Regression, SVM, XGBoost
- Hyperparameter tuning (GridSearchCV, Optuna)
- Model evaluation (confusion matrix, ROC-AUC)
π οΈ Mini Project:
Product review classifier (sentiment + spam + fake detection) using metadata + text features
π₯ PHASE 5: Deep Learning & Transformers (20β25 days)
π§ Dive into neural networks and transformers powering modern NLP:
- RNN, LSTM, GRU basics
- Attention mechanism & transformer architecture
- Hugging Face
transformers
ecosystem
π Key Models:
BERT, RoBERTa, DeBERTa, XLNet, T5, DistilBERT
Efficient transformers: Longformer, Performer, Reformer
π οΈ Mini Project:
Bengali BERT-based sentiment analysis using Hugging Face π€
𧬠PHASE 6: LLM Fine-Tuning & PEFT (~30 days)
βοΈ Master fine-tuning large language models efficiently:
- Fine-tuning vs prompt tuning vs adapter tuning
- LoRA, QLoRA, Prefix Tuning using π€
peft
- Instruction tuning, DPO, RLHF (basics)
π οΈ Tools & Libraries:
transformers
, peft
, trl
, bitsandbytes
, wandb
, deepspeed
π¦ Datasets:
ShareGPT, Alpaca, OpenAssistant, Bengali Q&A, multi-turn dialogue
π οΈ Projects:
- Fine-tune LLaMA-2 on Bengali customer service
- Knowledge-grounded QA bot with RAG + LangChain
π PHASE 7: Deployment & Serving (20 days)
π‘ Learn to deploy and monitor your NLP models in production:
Area | Details |
---|---|
API Serving | FastAPI, Gradio, Streamlit |
Dockerization | Containerize your ML apps |
Model Serialization |
joblib , torch.save , ONNX |
CI/CD | GitHub Actions, Jenkins |
Model Hosting | Hugging Face Spaces, AWS SageMaker, GCP Vertex |
Versioning & Monitoring | DVC, MLflow, Weights & Biases, Prometheus, Grafana |
Feature Store & Governance | Store & track feature data & model versions |
β οΈ Common Challenges & Fixes:
- Model Drift β batch prediction + A/B testing
- Memory Issues β model quantization,
bitsandbytes
- Token limit crashes β chunk input or use long-context models
π οΈ Mini Project:
Dockerized Bengali LLM API with Gradio UI + FastAPI backend, tracked with MLflow
π Must-Read NLP & LLM Papers
Paper | Link | Key Idea |
---|---|---|
π§ BERT | arXiv | Contextual embeddings |
β‘ RoBERTa | arXiv | Improved BERT training |
π§ T5 | arXiv | Unified text-to-text model |
π InstructGPT | arXiv | Instruction tuning |
π§ͺ LoRA | arXiv | Efficient fine-tuning |
π DistilBERT | arXiv | Model compression |
π RAG | arXiv | Retrieval-Augmented QA |
π Chain of Thought | arXiv | Multi-step reasoning |
π§° Capstone Projects (Choose 1β2)
Project | Tech Stack |
---|---|
π£οΈ Bengali Voice Chatbot (LLM + ASR + TTS) | Whisper, BERT, LangChain |
π Resume Screener (Multimodal) | BERT + OCR (PyTesseract) |
π° News Classifier + Summarizer | T5, BART, LDA |
π Customer Churn Detector | Text + metadata + tabular fusion |
π« Hate Speech & Toxicity Classifier | BERT + Gradio Dashboard |
π Connect with me:
- GitHub: @sajjadrahman56
- LinkedIn: Md. Sajjadur Rahman
- YouTube: sajjadrahman56
- Twitter/X: @sajjadrahman56
π€ Some parts of this content were assisted by ChatGPT (OpenAI).
Top comments (0)