DEV Community

Sajjad Rahman
Sajjad Rahman

Posted on

NLP Learn and Build β€”Industry-Ready Roadmap (2025)

πŸš€ Welcome to your comprehensive, step-by-step journey to become a skilled NLP Engineer ready to tackle real-world challenges β€” from data handling to advanced LLM fine-tuning and deployment!

⏳ Total Duration: Self Study

🧱 Skill Levels: Beginner β†’ Expert

🎯 Final Goal: Real Industry NLP / LLM Engineer


🧩 PHASE 1: Data Understanding & File Formats (15 days)

πŸ“š Learn to handle all types of data formats used in the industry:

Topic Details
πŸ—‚οΈ Structured files .csv, .tsv, .xlsx (pandas, openpyxl)
πŸ”„ Semi-structured files .json, .jsonl, .xml, .yaml
πŸ“œ Unstructured text Raw .txt files, scraped text
🏷️ Columnar formats .parquet, .avro, .orc (pyarrow, fastparquet, Spark)
πŸ—„οΈ Databases SQL (sqlite3, MySQL, PostgreSQL) + NoSQL (MongoDB, Firebase)
⚑ Big Data Access Apache Spark, PySpark (read/write from S3, Hive, HDFS)

✨ Bonus:

  • Metadata schemas (JSON, XML)
  • Schema evolution & backward compatibility (Avro, Parquet)
  • Data versioning basics with DVC

πŸ› οΈ Mini Project:

Load 10k JSON/XML resumes β†’ clean β†’ convert & store in Parquet β†’ query using PySpark


🧹 PHASE 2: Text Cleaning & Preprocessing (10–15 days)

🎯 Master the essential text cleaning pipelines to prepare noisy real-world data:

  • Tokenization, normalization, stopword removal
  • Regex magic πŸͺ„ for pattern matching
  • Language detection 🌐 and filtering
  • Emoji, URL, email handling
  • Spelling correction & slang expansion

πŸ”§ Tools & Libraries:

spaCy, nltk, re, langdetect, ftfy, pyspellchecker

πŸ’‘ Pro Tip:

Log discarded rows and language mismatches for audit and reproducibility!


πŸ“Š PHASE 3: Text Vectorization & Feature Engineering (10–12 days)

πŸ” Transform raw text into machine-readable features:

  • TF-IDF, Bag of Words, N-grams
  • Word embeddings: Word2Vec, FastText, GloVe
  • Document embeddings: Doc2Vec, Sentence-BERT
  • Dimensionality reduction: PCA, SVD
  • Metadata features: Text length, language, readability

πŸ› οΈ Mini Project:

Build an email classifier combining TF-IDF + sender/subject metadata + RandomForest


πŸ€– PHASE 4: Classical ML for NLP (10–15 days)

πŸ’» Learn to train and tune traditional ML models for NLP:

  • Naive Bayes, Logistic Regression, SVM, XGBoost
  • Hyperparameter tuning (GridSearchCV, Optuna)
  • Model evaluation (confusion matrix, ROC-AUC)

πŸ› οΈ Mini Project:

Product review classifier (sentiment + spam + fake detection) using metadata + text features


πŸ”₯ PHASE 5: Deep Learning & Transformers (20–25 days)

🧠 Dive into neural networks and transformers powering modern NLP:

  • RNN, LSTM, GRU basics
  • Attention mechanism & transformer architecture
  • Hugging Face transformers ecosystem

πŸ“š Key Models:

BERT, RoBERTa, DeBERTa, XLNet, T5, DistilBERT

Efficient transformers: Longformer, Performer, Reformer

πŸ› οΈ Mini Project:

Bengali BERT-based sentiment analysis using Hugging Face πŸ€—


🧬 PHASE 6: LLM Fine-Tuning & PEFT (~30 days)

βš™οΈ Master fine-tuning large language models efficiently:

  • Fine-tuning vs prompt tuning vs adapter tuning
  • LoRA, QLoRA, Prefix Tuning using πŸ€— peft
  • Instruction tuning, DPO, RLHF (basics)

πŸ› οΈ Tools & Libraries:

transformers, peft, trl, bitsandbytes, wandb, deepspeed

πŸ“¦ Datasets:

ShareGPT, Alpaca, OpenAssistant, Bengali Q&A, multi-turn dialogue

πŸ› οΈ Projects:

  • Fine-tune LLaMA-2 on Bengali customer service
  • Knowledge-grounded QA bot with RAG + LangChain

πŸš€ PHASE 7: Deployment & Serving (20 days)

πŸ“‘ Learn to deploy and monitor your NLP models in production:

Area Details
API Serving FastAPI, Gradio, Streamlit
Dockerization Containerize your ML apps
Model Serialization joblib, torch.save, ONNX
CI/CD GitHub Actions, Jenkins
Model Hosting Hugging Face Spaces, AWS SageMaker, GCP Vertex
Versioning & Monitoring DVC, MLflow, Weights & Biases, Prometheus, Grafana
Feature Store & Governance Store & track feature data & model versions

⚠️ Common Challenges & Fixes:

  • Model Drift β†’ batch prediction + A/B testing
  • Memory Issues β†’ model quantization, bitsandbytes
  • Token limit crashes β†’ chunk input or use long-context models

πŸ› οΈ Mini Project:

Dockerized Bengali LLM API with Gradio UI + FastAPI backend, tracked with MLflow

πŸ“‘ Must-Read NLP & LLM Papers

Paper Link Key Idea
🧠 BERT arXiv Contextual embeddings
⚑ RoBERTa arXiv Improved BERT training
🧠 T5 arXiv Unified text-to-text model
πŸ” InstructGPT arXiv Instruction tuning
πŸ§ͺ LoRA arXiv Efficient fine-tuning
πŸ”„ DistilBERT arXiv Model compression
πŸ”Ž RAG arXiv Retrieval-Augmented QA
πŸ“œ Chain of Thought arXiv Multi-step reasoning

🧰 Capstone Projects (Choose 1–2)

Project Tech Stack
πŸ—£οΈ Bengali Voice Chatbot (LLM + ASR + TTS) Whisper, BERT, LangChain
πŸ“„ Resume Screener (Multimodal) BERT + OCR (PyTesseract)
πŸ“° News Classifier + Summarizer T5, BART, LDA
πŸ“‰ Customer Churn Detector Text + metadata + tabular fusion
🚫 Hate Speech & Toxicity Classifier BERT + Gradio Dashboard

πŸ”— Connect with me:

πŸ€– Some parts of this content were assisted by ChatGPT (OpenAI).

Top comments (0)