Common Strategies for Coding Interview Questions
Two Pointers
The two pointers technique is often used to solve array-related problems efficiently. It involves using two pointers that either move towards each other or in the same direction.
Example: Finding a pair of numbers in a sorted array that sum up to a target value.
/**
* Finds a pair of numbers in a sorted array that sum up to a target value.
* Uses the two-pointer technique for efficient searching.
*
* @param {number[]} arr - The sorted array of numbers to search through.
* @param {number} target - The target sum to find.
* @returns {number[]|null} - Returns an array containing the pair if found, or null if not found.
*/
function findPairWithSum(arr, target) {
// Initialize two pointers: one at the start and one at the end of the array
let left = 0;
let right = arr.length - 1;
// Continue searching while the left pointer is less than the right pointer
while (left < right) {
console.log(`Checking pair: ${arr[left]} and ${arr[right]}`);
// Calculate the sum of the current pair
const sum = arr[left] + arr[right];
if (sum === target) {
// If the sum equals the target, we've found our pair
console.log(`Found pair: ${arr[left]} + ${arr[right]} = ${target}`);
return [arr[left], arr[right]];
} else if (sum < target) {
// If the sum is less than the target, we need a larger sum
// So, we move the left pointer to the right to increase the sum
console.log(`Sum ${sum} is less than target ${target}, moving left pointer`);
left++;
} else {
// If the sum is greater than the target, we need a smaller sum
// So, we move the right pointer to the left to decrease the sum
console.log(`Sum ${sum} is greater than target ${target}, moving right pointer`);
right--;
}
}
// If we've exhausted all possibilities without finding a pair, return null
console.log("No pair found");
return null;
}
// Example usage
const sortedArray = [1, 3, 5, 7, 9, 11];
const targetSum = 14;
findPairWithSum(sortedArray, targetSum);
Sliding Window
The sliding window technique is useful for solving problems that involve contiguous sequences in arrays or strings.
Example: Finding the maximum sum of a subarray of size k.
/**
* Finds the maximum sum of a subarray of size k in the given array.
* @param {number[]} arr - The input array of numbers.
* @param {number} k - The size of the subarray.
* @returns {number|null} The maximum sum of a subarray of size k, or null if the array length is less than k.
*/
function maxSubarraySum(arr, k) {
// Check if the array length is less than k
if (arr.length < k) {
console.log("Array length is less than k");
return null;
}
let maxSum = 0;
let windowSum = 0;
// Calculate sum of first window
for (let i = 0; i < k; i++) {
windowSum += arr[i];
}
maxSum = windowSum;
console.log(`Initial window sum: ${windowSum}, Window: [${arr.slice(0, k)}]`);
// Slide the window and update the maximum sum
for (let i = k; i < arr.length; i++) {
// Remove the first element of the previous window and add the last element of the new window
windowSum = windowSum - arr[i - k] + arr[i];
console.log(`New window sum: ${windowSum}, Window: [${arr.slice(i - k + 1, i + 1)}]`);
// Update maxSum if the current window sum is greater
if (windowSum > maxSum) {
maxSum = windowSum;
console.log(`New max sum found: ${maxSum}, Window: [${arr.slice(i - k + 1, i + 1)}]`);
}
}
console.log(`Final max sum: ${maxSum}`);
return maxSum;
}
// Example usage
const array = [1, 4, 2, 10, 23, 3, 1, 0, 20];
const k = 4;
maxSubarraySum(array, k);
Hash Table
Hash tables are excellent for solving problems that require quick lookups or counting occurrences.
Example: Finding the first non-repeating character in a string.
/**
* Finds the first non-repeating character in a given string.
* @param {string} str - The input string to search.
* @returns {string|null} The first non-repeating character, or null if not found.
*/
function firstNonRepeatingChar(str) {
const charCount = new Map();
// Count occurrences of each character
for (let char of str) {
charCount.set(char, (charCount.get(char) || 0) + 1);
console.log(`Character ${char} count: ${charCount.get(char)}`);
}
// Find the first character with count 1
for (let char of str) {
if (charCount.get(char) === 1) {
console.log(`First non-repeating character found: ${char}`);
return char;
}
}
console.log("No non-repeating character found");
return null;
}
// Example usage
const inputString = "aabccdeff";
firstNonRepeatingChar(inputString);
These strategies demonstrate efficient ways to solve common coding interview problems. The verbose logging in each example helps to understand the step-by-step process of the algorithms, which can be crucial during interviews to explain your thought process.
Here's a code block demonstrating how to use maps to better understand some of these operations:
// Create a new Map
const fruitInventory = new Map();
// Set key-value pairs
fruitInventory.set('apple', 5);
fruitInventory.set('banana', 3);
fruitInventory.set('orange', 2);
console.log('Initial inventory:', fruitInventory);
// Get a value using a key
console.log('Number of apples:', fruitInventory.get('apple'));
// Check if a key exists
console.log('Do we have pears?', fruitInventory.has('pear'));
// Update a value
fruitInventory.set('banana', fruitInventory.get('banana') + 2);
console.log('Updated banana count:', fruitInventory.get('banana'));
// Delete a key-value pair
fruitInventory.delete('orange');
console.log('Inventory after removing oranges:', fruitInventory);
// Iterate over the map
console.log('Current inventory:');
fruitInventory.forEach((count, fruit) => {
console.log(`${fruit}: ${count}`);
});
// Get the size of the map
console.log('Number of fruit types:', fruitInventory.size);
// Clear the entire map
fruitInventory.clear();
console.log('Inventory after clearing:', fruitInventory);
This example demonstrates various Map operations:
- Creating a new Map
- Adding key-value pairs with
- Retrieving values with
- Checking for key existence with
- Updating values
- Deleting key-value pairs with
- Iterating over the Map with
- Getting the size of the Map
- Clearing the entire Map with
These operations are similar to the ones used in the
firstNonRepeatingChar
function, where we use a Map to count character occurrences and then search for the first character with a count of 1.
Dynamic Programming Tutorial
Dynamic programming is a powerful algorithmic technique used to solve complex problems by breaking them down into simpler subproblems. Let's explore this concept with an example of calculating Fibonacci numbers.
/**
* Calculates the nth Fibonacci number using dynamic programming.
* @param {number} n - The position of the Fibonacci number to calculate.
* @returns {number} The nth Fibonacci number.
*/
function fibonacci(n) {
// Initialize an array to store Fibonacci numbers
const fib = new Array(n + 1);
// Base cases
fib[0] = 0;
fib[1] = 1;
console.log(`F(0) = ${fib[0]}`);
console.log(`F(1) = ${fib[1]}`);
// Calculate Fibonacci numbers iteratively
for (let i = 2; i <= n; i++) {
fib[i] = fib[i - 1] + fib[i - 2];
console.log(`F(${i}) = ${fib[i]}`);
}
return fib[n];
}
// Example usage
const n = 10;
console.log(`The ${n}th Fibonacci number is:`, fibonacci(n));
This example demonstrates how dynamic programming can efficiently calculate Fibonacci numbers by storing previously computed values and using them for future calculations.
Binary Search Tutorial
Binary search is an efficient algorithm for finding an element in a sorted array. Here's an implementation with detailed logging:
/**
* Performs a binary search on a sorted array.
* @param {number[]} arr - The sorted array to search.
* @param {number} target - The value to find.
* @returns {number} The index of the target if found, or -1 if not found.
*/
function binarySearch(arr, target) {
let left = 0;
let right = arr.length - 1;
while (left <= right) {
const mid = Math.floor((left + right) / 2);
console.log(`Searching in range [${left}, ${right}], mid = ${mid}`);
if (arr[mid] === target) {
console.log(`Target ${target} found at index ${mid}`);
return mid;
} else if (arr[mid] < target) {
console.log(`${arr[mid]} < ${target}, searching right half`);
left = mid + 1;
} else {
console.log(`${arr[mid]} > ${target}, searching left half`);
right = mid - 1;
}
}
console.log(`Target ${target} not found in the array`);
return -1;
}
// Example usage
const sortedArray = [1, 3, 5, 7, 9, 11, 13, 15];
const target = 7;
binarySearch(sortedArray, target);
This implementation shows how binary search efficiently narrows down the search range by half in each iteration, making it much faster than linear search for large sorted arrays.
- Depth-First Search (DFS)
- Breadth-First Search (BFS)
- Heap (Priority Queue)
- Trie (Prefix Tree)
- Union-Find (Disjoint Set)
- Topological Sort
Depth-First Search (DFS)
Depth-First Search is a graph traversal algorithm that explores as far as possible along each branch before backtracking. Here's an example implementation for a graph represented as an adjacency list:
class Graph {
constructor() {
this.adjacencyList = {};
}
addVertex(vertex) {
if (!this.adjacencyList[vertex]) this.adjacencyList[vertex] = [];
}
addEdge(v1, v2) {
this.adjacencyList[v1].push(v2);
this.adjacencyList[v2].push(v1);
}
dfs(start) {
const result = [];
const visited = {};
const adjacencyList = this.adjacencyList;
(function dfsHelper(vertex) {
if (!vertex) return null;
visited[vertex] = true;
result.push(vertex);
console.log(`Visiting vertex: ${vertex}`);
adjacencyList[vertex].forEach(neighbor => {
if (!visited[neighbor]) {
console.log(`Exploring neighbor: ${neighbor} of vertex: ${vertex}`);
return dfsHelper(neighbor);
} else {
console.log(`Neighbor: ${neighbor} already visited`);
}
});
})(start);
return result;
}
}
// Example usage
const graph = new Graph();
['A', 'B', 'C', 'D', 'E', 'F'].forEach(vertex => graph.addVertex(vertex));
graph.addEdge('A', 'B');
graph.addEdge('A', 'C');
graph.addEdge('B', 'D');
graph.addEdge('C', 'E');
graph.addEdge('D', 'E');
graph.addEdge('D', 'F');
graph.addEdge('E', 'F');
console.log(graph.dfs('A'));
Breadth-First Search (BFS)
BFS explores all vertices at the present depth before moving to vertices at the next depth level. Here's an implementation:
class Graph {
// ... (same constructor, addVertex, and addEdge methods as above)
bfs(start) {
const queue = [start];
const result = [];
const visited = {};
visited[start] = true;
while (queue.length) {
let vertex = queue.shift();
result.push(vertex);
console.log(`Visiting vertex: ${vertex}`);
this.adjacencyList[vertex].forEach(neighbor => {
if (!visited[neighbor]) {
visited[neighbor] = true;
queue.push(neighbor);
console.log(`Adding neighbor: ${neighbor} to queue`);
} else {
console.log(`Neighbor: ${neighbor} already visited`);
}
});
}
return result;
}
}
// Example usage (using the same graph as in DFS example)
console.log(graph.bfs('A'));
Heap (Priority Queue)
A heap is a specialized tree-based data structure that satisfies the heap property. Here's a simple implementation of a min-heap:
class MinHeap {
constructor() {
this.heap = [];
}
getParentIndex(i) {
return Math.floor((i - 1) / 2);
}
getLeftChildIndex(i) {
return 2 * i + 1;
}
getRightChildIndex(i) {
return 2 * i + 2;
}
swap(i1, i2) {
[this.heap[i1], this.heap[i2]] = [this.heap[i2], this.heap[i1]];
}
insert(key) {
this.heap.push(key);
this.heapifyUp(this.heap.length - 1);
}
heapifyUp(i) {
let currentIndex = i;
while (this.heap[currentIndex] < this.heap[this.getParentIndex(currentIndex)]) {
this.swap(currentIndex, this.getParentIndex(currentIndex));
currentIndex = this.getParentIndex(currentIndex);
}
}
extractMin() {
if (this.heap.length === 0) return null;
if (this.heap.length === 1) return this.heap.pop();
const min = this.heap[0];
this.heap[0] = this.heap.pop();
this.heapifyDown(0);
return min;
}
heapifyDown(i) {
let smallest = i;
const left = this.getLeftChildIndex(i);
const right = this.getRightChildIndex(i);
if (left < this.heap.length && this.heap[left] < this.heap[smallest]) {
smallest = left;
}
if (right < this.heap.length && this.heap[right] < this.heap[smallest]) {
smallest = right;
}
if (smallest !== i) {
this.swap(i, smallest);
this.heapifyDown(smallest);
}
}
}
// Example usage
const minHeap = new MinHeap();
[3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5].forEach(num => minHeap.insert(num));
console.log(minHeap.heap);
console.log(minHeap.extractMin());
console.log(minHeap.heap);
Trie (Prefix Tree)
A Trie is an efficient information retrieval data structure, commonly used for string searching:
class TrieNode {
constructor() {
this.children = {};
this.isEndOfWord = false;
}
}
class Trie {
constructor() {
this.root = new TrieNode();
}
insert(word) {
let current = this.root;
for (let char of word) {
if (!current.children[char]) {
current.children[char] = new TrieNode();
}
current = current.children[char];
}
current.isEndOfWord = true;
console.log(`Inserted word: ${word}`);
}
search(word) {
let current = this.root;
for (let char of word) {
if (!current.children[char]) {
console.log(`Word ${word} not found`);
return false;
}
current = current.children[char];
}
console.log(`Word ${word} ${current.isEndOfWord ? 'found' : 'not found'}`);
return current.isEndOfWord;
}
startsWith(prefix) {
let current = this.root;
for (let char of prefix) {
if (!current.children[char]) {
console.log(`No words start with ${prefix}`);
return false;
}
current = current.children[char];
}
console.log(`Found words starting with ${prefix}`);
return true;
}
}
// Example usage
const trie = new Trie();
['apple', 'app', 'apricot', 'banana'].forEach(word => trie.insert(word));
trie.search('app');
trie.search('application');
trie.startsWith('app');
trie.startsWith('ban');
Union-Find (Disjoint Set)
Union-Find is a data structure that keeps track of elements which are split into one or more disjoint sets:
class UnionFind {
constructor(size) {
this.parent = Array(size).fill().map((_, i) => i);
this.rank = Array(size).fill(0);
this.count = size;
}
find(x) {
if (this.parent[x] !== x) {
this.parent[x] = this.find(this.parent[x]);
}
return this.parent[x];
}
union(x, y) {
let rootX = this.find(x);
let rootY = this.find(y);
if (rootX === rootY) return;
if (this.rank[rootX] < this.rank[rootY]) {
[rootX, rootY] = [rootY, rootX];
}
this.parent[rootY] = rootX;
if (this.rank[rootX] === this.rank[rootY]) {
this.rank[rootX]++;
}
this.count--;
console.log(`United ${x} and ${y}`);
}
connected(x, y) {
return this.find(x) === this.find(y);
}
}
// Example usage
const uf = new UnionFind(10);
uf.union(0, 1);
uf.union(2, 3);
uf.union(4, 5);
uf.union(6, 7);
uf.union(8, 9);
uf.union(0, 2);
uf.union(4, 6);
uf.union(0, 4);
console.log(uf.connected(1, 5)); // Should print: true
console.log(uf.connected(7, 9)); // Should print: false
Topological Sort
Topological sorting is used for ordering tasks with dependencies. Here's an implementation using DFS:
class Graph {
constructor() {
this.adjacencyList = {};
}
addVertex(vertex) {
if (!this.adjacencyList[vertex]) this.adjacencyList[vertex] = [];
}
addEdge(v1, v2) {
this.adjacencyList[v1].push(v2);
}
topologicalSort() {
const visited = {};
const stack = [];
const dfsHelper = (vertex) => {
visited[vertex] = true;
this.adjacencyList[vertex].forEach(neighbor => {
if (!visited[neighbor]) {
dfsHelper(neighbor);
}
});
stack.push(vertex);
console.log(`Added ${vertex} to stack`);
};
for (let vertex in this.adjacencyList) {
if (!visited[vertex]) {
dfsHelper(vertex);
}
}
return stack.reverse();
}
}
// Example usage
const graph = new Graph();
['A', 'B', 'C', 'D', 'E', 'F'].forEach(vertex => graph.addVertex(vertex));
graph.addEdge('A', 'C');
graph.addEdge('B', 'C');
graph.addEdge('B', 'D');
graph.addEdge('C', 'E');
graph.addEdge('D', 'F');
graph.addEdge('E', 'F');
console.log(graph.topologicalSort());
These implementations provide a solid foundation for understanding and using these important algorithms and data structures in coding interviews and real-world applications.
If you liked this tutorial follow me here and on X/Twitter at @turckalicious. This article was made with the help of Wonderfall (https://wonderfall.xyz), an AI-powered interactive document editor that helps you research, write, and iterate faster.
Top comments (0)