1) GCP Track — Ava on Vertex AI
⚙️ Architecture (GCP)
Dev -> GitHub Actions -> Artifact Registry -> Vertex AI (Train/Batch/Endpoints)
| -> Cloud Run (feature API / workers)
Data -> GCS (raw/feat) -> BigQuery (analytics)
Meta -> Firestore (pattern_ledger) + Cloud Logging + Cloud Monitoring
🗂 Repo layout (GCP)
ava-vertex-ml/
├─ infra/
│ ├─ terraform/
│ │ ├─ main.tf # project, iam, artifact registry, gcs, bq
│ │ ├─ vertex.tf # endpoints, models, service accounts
│ │ └─ outputs.tf
├─ services/
│ ├─ trainer/
│ │ ├─ Dockerfile
│ │ ├─ train.py
│ │ └─ requirements.txt
│ ├─ batch_infer/
│ │ ├─ Dockerfile
│ │ └─ batch.py
│ └─ feature_api/
│ ├─ Dockerfile
│ └─ app.py # FastAPI on Cloud Run
├─ pipelines/
│ ├─ vertex_pipeline.py # Vertex AI Pipeline (KFP v2)
│ └─ components/...
├─ ops/
│ ├─ gh-actions/
│ │ ├─ build_push_gcp.yml
│ │ └─ deploy_vertex.yml
│ └─ makefile
├─ binflow/
│ ├─ ledger.py # minimal pattern ledger (FireStore)
│ └─ phases.py # Focus, Loop, Transition, Pause, Emergence
└─ README.md
🧱 Terraform (GCP) — minimal core
# infra/terraform/main.tf
provider "google" {
project = var.project_id
region = var.region
}
resource "google_artifact_registry_repository" "repo" {
location = var.region
repository_id = "ml-images"
format = "DOCKER"
}
resource "google_storage_bucket" "data" {
name = "${var.project_id}-ml-data"
location = var.region
}
resource "google_bigquery_dataset" "ds" {
dataset_id = "ml_analytics"
location = var.region
delete_contents_on_destroy = true
}
# Service Account for Vertex
resource "google_service_account" "vertex_sa" {
account_id = "vertex-exec"
display_name = "Vertex Execution SA"
}
🐳 Trainer (GCP)
# services/trainer/Dockerfile
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY train.py .
CMD ["python", "train.py"]
# services/trainer/requirements.txt
google-cloud-storage
google-cloud-aiplatform
pandas
scikit-learn
# services/trainer/train.py
import os, json, time
from google.cloud import storage, aiplatform
from binflow.ledger import log_event
PROJECT = os.getenv("PROJECT")
BUCKET = os.getenv("BUCKET")
REGION = os.getenv("REGION","us-central1")
def main():
log_event(phase="Focus", action="trainer:start", payload={"region": REGION})
# mock train
time.sleep(2)
model_uri = f"gs://{BUCKET}/models/model.pkl"
# save artifact…
log_event(phase="Emergence", action="trainer:complete", payload={"model_uri": model_uri})
print(json.dumps({"model_uri": model_uri}))
if __name__ == "__main__":
main()
🔁 Vertex pipeline (KFP v2) — skeleton
# pipelines/vertex_pipeline.py
from kfp import dsl
from google_cloud_pipeline_components.v1.custom_job import CustomTrainingJobOp
@dsl.pipeline(name="ava-vertex-pipeline")
def pipeline():
train = CustomTrainingJobOp(
display_name="trainer",
worker_pool_specs=[{
"machine_spec": {"machine_type": "n1-standard-4"},
"replica_count": "1",
"container_spec": {
"image_uri": "REGION-docker.pkg.dev/PROJECT/ml-images/trainer:latest",
"args": []
}
}]
)
🔧 GitHub Actions (GCP)
# ops/gh-actions/build_push_gcp.yml
name: Build & Push (GCP)
on: [push]
jobs:
build-push:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: google-github-actions/auth@v2
with:
credentials_json: ${{ secrets.GCP_SA_KEY }}
- uses: google-github-actions/setup-gcloud@v2
- run: gcloud auth configure-docker REGION-docker.pkg.dev --quiet
- run: |
IMAGE=REGION-docker.pkg.dev/${{ secrets.GCP_PROJECT }}/ml-images/trainer:$(git rev-parse --short HEAD)
docker build -t $IMAGE services/trainer
docker push $IMAGE
2) AWS Track — Noah on SageMaker
⚙️ Architecture (AWS)
Dev -> GitHub Actions -> ECR -> SageMaker (Train/Batch/Realtime Endpoints)
| -> ECS Fargate (feature API / workers)
Data -> S3 (raw/feat) -> Athena/Glue (analytics)
Meta -> DynamoDB (pattern_ledger) + CloudWatch + X-Ray
🗂 Repo layout (AWS)
noah-sagemaker-ml/
├─ infra/
│ ├─ terraform/
│ │ ├─ main.tf # s3, ecr, iam roles, dynamodb
│ │ └─ sagemaker.tf # endpoints, exec roles
├─ services/
│ ├─ trainer/
│ │ ├─ Dockerfile
│ │ ├─ train.py
│ │ └─ requirements.txt
│ ├─ batch_infer/
│ └─ feature_api/ # FastAPI -> ECS Fargate
├─ pipelines/
│ └─ sagemaker_pipeline.py # SM Pipeline (optional)
├─ ops/
│ ├─ gh-actions/
│ │ ├─ build_push_aws.yml
│ │ └─ deploy_sagemaker.yml
│ └─ makefile
├─ binflow/
│ ├─ ledger_dynamo.py # minimal pattern ledger on DynamoDB
│ └─ phases.py
└─ README.md
🧱 Terraform (AWS) — minimal core
# infra/terraform/main.tf
provider "aws" { region = var.region }
resource "aws_s3_bucket" "data" {
bucket = "${var.project}-ml-data"
}
resource "aws_ecr_repository" "repo" {
name = "ml-images"
image_scanning_configuration { scan_on_push = true }
}
resource "aws_dynamodb_table" "ledger" {
name = "${var.project}-pattern-ledger"
billing_mode = "PAY_PER_REQUEST"
hash_key = "pattern_id"
attribute { name = "pattern_id" type = "S" }
}
🐳 Trainer (AWS)
# services/trainer/Dockerfile
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY train.py .
ENV AWS_DEFAULT_REGION=us-east-1
CMD ["python", "train.py"]
# services/trainer/requirements.txt
boto3
pandas
scikit-learn
# services/trainer/train.py
import os, json, time, boto3
from binflow.ledger_dynamo import log_event
S3_BUCKET = os.getenv("S3_BUCKET")
def main():
log_event(phase="Focus", action="trainer:start", payload={"bucket": S3_BUCKET})
time.sleep(2)
model_uri = f"s3://{S3_BUCKET}/models/model.pkl"
# save artifact…
log_event(phase="Emergence", action="trainer:complete", payload={"model_uri": model_uri})
print(json.dumps({"model_uri": model_uri}))
if __name__ == "__main__":
main()
🔧 GitHub Actions (AWS)
# ops/gh-actions/build_push_aws.yml
name: Build & Push (AWS)
on: [push]
jobs:
build-push:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: aws-actions/configure-aws-credentials@v4
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ secrets.AWS_REGION }}
- run: |
REPO="${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.${{ secrets.AWS_REGION }}.amazonaws.com/ml-images"
aws ecr get-login-password --region ${{ secrets.AWS_REGION }} | docker login --username AWS --password-stdin $REPO
TAG=$(git rev-parse --short HEAD)
docker build -t $REPO:$TAG services/trainer
docker push $REPO:$TAG
3) The Shared “Reps Framework” (both clouds)
🧩 What “reps” means here
- Every experiment is a pattern (code + config + data snapshot).
-
Each run logs BINFLOW phase events:
- Focus (setup), Loop (iterations), Transition (deploy), Pause (idle), Emergence (new artifact).
Proof-of-Leverage (PoL) aggregates usage across time (how often a pattern is reused, promoted, or composes with others).
🧾 Minimal pattern ledger (GCP Firestore or AWS DynamoDB)
GCP (Firestore):
# binflow/ledger.py
import os, time, uuid
from google.cloud import firestore
PROJECT = os.getenv("PROJECT")
_db = firestore.Client(project=PROJECT)
COLL = "pattern_ledger"
def log_event(phase, action, payload=None, pattern_id=None, actor_id="system"):
doc = {
"pattern_id": pattern_id or str(uuid.uuid4()),
"phase": phase,
"action": action,
"actor_id": actor_id,
"t_external": firestore.SERVER_TIMESTAMP,
"t_internal_ms": int(time.time()*1000),
"payload": payload or {}
}
_db.collection(COLL).add(doc)
return doc["pattern_id"]
AWS (DynamoDB):
# binflow/ledger_dynamo.py
import os, time, uuid, boto3
ddb = boto3.resource("dynamodb").Table(os.getenv("LEDGER_TABLE","project-pattern-ledger"))
def log_event(phase, action, payload=None, pattern_id=None, actor_id="system"):
pid = pattern_id or str(uuid.uuid4())
item = {
"pattern_id": pid,
"event_id": str(uuid.uuid4()),
"phase": phase,
"action": action,
"actor_id": actor_id,
"t_internal_ms": int(time.time()*1000),
"t_external": int(time.time()),
"payload": payload or {}
}
ddb.put_item(Item=item)
return pid
🧮 Quick PoL scoring (both)
- Weight phases (e.g., Emergence 1.8, Loop 1.4…)
- PoL = Σ phase_weight × log(1 + tokens_out/size) × time_decay
(You can compute PoL in BigQuery/Athena on the ledger table, or inside your trainer/CI to display it on dashboards.)
4) Fast “Hello World” flows
Ava @ GCP — train & deploy
terraform apply- Build + push trainer image via Actions
- Trigger Vertex CustomJob from GH Action or local:
gcloud ai custom-jobs create \
--region=$REGION \
--display-name="trainer" \
--config=trainer_job.yaml
- Register model → create endpoint
- Cloud Run
feature_apifor online features
Noah @ AWS — train & deploy
terraform apply- Build + push trainer image to ECR
- Create SageMaker Training Job (console or boto3)
- Register model + EndpointConfig + Endpoint
- ECS Fargate
feature_apifor online features
5) Why this slaps (for collabs)
- Symmetry: same mental model on GCP/AWS—easy cross-cloud hiring.
- Reps-first: experiments are first-class citizens; every run is reusable.
- BINFLOW phases: adds time-aware semantics to your logs without changing core ML code.
- Day-1 deployable: both stacks boot with Terraform and minimal Docker.
Top comments (1)
LET ME KNOW WHAT U THINK