DEV Community

Vinicius Fagundes
Vinicius Fagundes

Posted on

Retrieval-Augmented Generation: Connecting LLMs to Your Data

πŸ“š Tech Acronyms Reference

Quick reference for acronyms used in this article:

  • API - Application Programming Interface
  • BERT - Bidirectional Encoder Representations from Transformers
  • FAISS - Facebook AI Similarity Search
  • GPU - Graphics Processing Unit
  • JSON - JavaScript Object Notation
  • LLM - Large Language Model
  • RAG - Retrieval-Augmented Generation
  • ROI - Return on Investment
  • SQL - Structured Query Language
  • VRAM - Video Random Access Memory

🎯 Introduction: The Knowledge Problem

Large Language Models (LLMs) have a fundamental limitation: their knowledge is frozen at training time.

Ask GPT-4 about:

  • "What did our Q3 sales look like?" β†’ ❌ Doesn't know your data
  • "What's in our employee handbook?" β†’ ❌ Doesn't have your docs
  • "Show me tickets from yesterday" β†’ ❌ No real-time access
  • "What did the customer say in ticket #45632?" β†’ ❌ Can't see your database

The LLM has no knowledge of YOUR specific data.

Three solutions exist:

  1. Fine-tuning: Retrain the model on your data (expensive, slow, static)
  2. Long context: Put everything in the prompt (limited by context window, expensive)
  3. RAG: Retrieve relevant data, then generate response (flexible, scalable, cost-effective)

This article is about RAG - the most practical approach for production systems.


πŸ’‘ Data Engineer's ROI Lens

For this article, we're focusing on:

  1. What is RAG? (Architecture and workflow)
  2. How do I implement it? (Complete working code)
  3. When should I use RAG vs alternatives? (Decision framework)

RAG is the foundation for connecting LLMs to proprietary data at scale.


πŸ—οΈ Part 1: RAG Architecture

The Three-Stage Pipeline

Real-Life Analogy: The Research Assistant

Imagine you hire a research assistant to answer questions about your company:

Stage 1 - Indexing (Preparation):

  • Assistant reads all company documents
  • Creates organized notes with key topics
  • Files everything for quick retrieval

Stage 2 - Retrieval (Finding Relevant Info):

  • You ask: "What's our return policy?"
  • Assistant searches their notes
  • Pulls out the 3 most relevant documents

Stage 3 - Generation (Answering):

  • Assistant reads those 3 documents
  • Formulates an answer based on what they found
  • Responds to your question

RAG works the same way.

The RAG Workflow

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    INDEXING (Offline)                    β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                          β”‚
β”‚  Documents β†’ Chunking β†’ Embeddings β†’ Vector Database    β”‚
β”‚                                                          β”‚
β”‚  "handbook.pdf"     Split into        Create vector     β”‚
β”‚  "policies.docx" β†’ paragraphs    β†’   representations β†’ β”‚
β”‚  "faqs.md"          (chunks)          (embeddings)      β”‚
β”‚                                                          β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

                         ↓

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                  RETRIEVAL (Query Time)                  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                          β”‚
β”‚  User Query β†’ Embed Query β†’ Search Vector DB β†’ Top-K    β”‚
β”‚                                                          β”‚
β”‚  "What's the     Create vector    Find similar    Get 5 β”‚
β”‚   return        representation β†’ chunks        β†’ most   β”‚
β”‚   policy?"      of question       (cosine sim)    relevantβ”‚
β”‚                                                          β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

                         ↓

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                  GENERATION (Response)                   β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                          β”‚
β”‚  Retrieved Docs + Query β†’ LLM β†’ Final Answer            β”‚
β”‚                                                          β”‚
β”‚  Context: [5 relevant   Send to    "Our return policy   β”‚
β”‚  chunks about returns]  GPT-4   β†’  allows returns       β”‚
β”‚  Question: "return             within 30 days..."        β”‚
β”‚  policy?"                                                β”‚
β”‚                                                          β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
Enter fullscreen mode Exit fullscreen mode

πŸ’» Part 2: Building Your First RAG System

Step 1: Setup and Installation

pip install langchain
pip install chromadb  # Vector database
pip install sentence-transformers  # Embeddings
pip install litellm  # LLM interface
pip install pypdf  # PDF processing
Enter fullscreen mode Exit fullscreen mode

Step 2: Document Loading and Chunking

from typing import List
import re

def load_documents(file_paths: List[str]) -> List[str]:
    """Load documents from files"""
    documents = []

    for path in file_paths:
        with open(path, 'r', encoding='utf-8') as f:
            content = f.read()
            documents.append(content)

    return documents

def chunk_text(text: str, chunk_size: int = 500, overlap: int = 50) -> List[str]:
    """
    Split text into overlapping chunks.

    Args:
        text: Input text to chunk
        chunk_size: Target size of each chunk in characters
        overlap: Number of characters to overlap between chunks
    """
    # Simple sentence-aware chunking
    sentences = re.split(r'(?<=[.!?])\s+', text)

    chunks = []
    current_chunk = []
    current_size = 0

    for sentence in sentences:
        sentence_length = len(sentence)

        # If adding this sentence exceeds chunk_size, save current chunk
        if current_size + sentence_length > chunk_size and current_chunk:
            chunk_text = ' '.join(current_chunk)
            chunks.append(chunk_text)

            # Start new chunk with overlap
            # Keep last few sentences for context
            overlap_sentences = []
            overlap_size = 0
            for s in reversed(current_chunk):
                if overlap_size + len(s) < overlap:
                    overlap_sentences.insert(0, s)
                    overlap_size += len(s)
                else:
                    break

            current_chunk = overlap_sentences
            current_size = overlap_size

        current_chunk.append(sentence)
        current_size += sentence_length

    # Add final chunk
    if current_chunk:
        chunks.append(' '.join(current_chunk))

    return chunks

# Test chunking
sample_text = """
Our return policy allows returns within 30 days of purchase. 
Items must be in original condition with tags attached. 
Refunds are processed within 5-7 business days.

For exchanges, we offer free shipping on the replacement item.
Gift returns require the original gift receipt.
Sale items are final sale and cannot be returned.
"""

chunks = chunk_text(sample_text, chunk_size=100, overlap=20)
for i, chunk in enumerate(chunks):
    print(f"Chunk {i+1}: {chunk}\n")
Enter fullscreen mode Exit fullscreen mode

Output:

Chunk 1: Our return policy allows returns within 30 days of purchase. Items must be in original condition with tags attached.

Chunk 2: Items must be in original condition with tags attached. Refunds are processed within 5-7 business days.

Chunk 3: Refunds are processed within 5-7 business days. For exchanges, we offer free shipping on the replacement item.

Chunk 4: For exchanges, we offer free shipping on the replacement item. Gift returns require the original gift receipt.

Chunk 5: Gift returns require the original gift receipt. Sale items are final sale and cannot be returned.
Enter fullscreen mode Exit fullscreen mode

Step 3: Create Embeddings and Vector Database

from sentence_transformers import SentenceTransformer
import chromadb
from chromadb.config import Settings

class VectorStore:
    """Simple vector database wrapper"""

    def __init__(self, collection_name: str = "documents"):
        # Initialize embedding model
        self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')

        # Initialize ChromaDB
        self.client = chromadb.Client(Settings(
            anonymized_telemetry=False
        ))

        # Create or get collection
        self.collection = self.client.create_collection(
            name=collection_name,
            metadata={"hnsw:space": "cosine"}  # Use cosine similarity
        )

    def add_documents(self, texts: List[str], metadata: List[dict] = None):
        """Add documents to vector store"""
        # Generate embeddings
        embeddings = self.embedding_model.encode(texts).tolist()

        # Generate IDs
        ids = [f"doc_{i}" for i in range(len(texts))]

        # Add to collection
        self.collection.add(
            embeddings=embeddings,
            documents=texts,
            ids=ids,
            metadatas=metadata if metadata else [{}] * len(texts)
        )

        print(f"Added {len(texts)} documents to vector store")

    def search(self, query: str, top_k: int = 5) -> List[dict]:
        """Search for similar documents"""
        # Embed query
        query_embedding = self.embedding_model.encode([query]).tolist()

        # Search
        results = self.collection.query(
            query_embeddings=query_embedding,
            n_results=top_k
        )

        # Format results
        documents = []
        for i in range(len(results['documents'][0])):
            documents.append({
                'text': results['documents'][0][i],
                'distance': results['distances'][0][i],
                'metadata': results['metadatas'][0][i]
            })

        return documents

# Example usage
vector_store = VectorStore(collection_name="company_docs")

# Sample company documents
documents = [
    "Our return policy allows returns within 30 days of purchase with original receipt.",
    "Shipping is free for orders over $50. Standard shipping takes 3-5 business days.",
    "We offer 24/7 customer support via phone, email, and live chat.",
    "All products come with a 1-year manufacturer warranty covering defects.",
    "International shipping is available to over 100 countries worldwide.",
    "Our price match guarantee ensures you get the best deal within 14 days of purchase."
]

# Add documents
vector_store.add_documents(documents)

# Search
query = "How long do I have to return something?"
results = vector_store.search(query, top_k=3)

print(f"\nQuery: {query}\n")
for i, result in enumerate(results):
    print(f"Result {i+1} (distance: {result['distance']:.3f}):")
    print(f"{result['text']}\n")
Enter fullscreen mode Exit fullscreen mode

Output:

Added 6 documents to vector store

Query: How long do I have to return something?

Result 1 (distance: 0.312):
Our return policy allows returns within 30 days of purchase with original receipt.

Result 2 (distance: 0.689):
Our price match guarantee ensures you get the best deal within 14 days of purchase.

Result 3 (distance: 0.724):
All products come with a 1-year manufacturer warranty covering defects.
Enter fullscreen mode Exit fullscreen mode

Step 4: Complete RAG Pipeline

from litellm import completion

class RAGSystem:
    """Complete RAG system"""

    def __init__(self, vector_store: VectorStore, model: str = "gpt-4"):
        self.vector_store = vector_store
        self.model = model

    def query(
        self,
        question: str,
        top_k: int = 5,
        temperature: float = 0.0
    ) -> dict:
        """
        Query the RAG system.

        Returns:
            dict with 'answer', 'sources', and 'retrieved_docs'
        """
        # Step 1: Retrieve relevant documents
        retrieved_docs = self.vector_store.search(question, top_k=top_k)

        # Step 2: Build context from retrieved documents
        context = "\n\n".join([
            f"[Document {i+1}]\n{doc['text']}"
            for i, doc in enumerate(retrieved_docs)
        ])

        # Step 3: Create prompt with context
        prompt = f"""Answer the question based on the context below. If the answer is not in the context, say "I don't have enough information to answer that."

Context:
{context}

Question: {question}

Answer:"""

        # Step 4: Generate response
        response = completion(
            model=self.model,
            messages=[{"role": "user", "content": prompt}],
            temperature=temperature
        )

        answer = response.choices[0].message.content

        return {
            'answer': answer,
            'sources': [doc['text'] for doc in retrieved_docs],
            'retrieved_docs': retrieved_docs,
            'context': context
        }

    def query_with_citation(self, question: str, top_k: int = 5) -> str:
        """Query with inline citations"""
        result = self.query(question, top_k=top_k)

        # Build answer with citations
        answer = result['answer']
        sources = result['sources']

        response = f"{answer}\n\nSources:\n"
        for i, source in enumerate(sources[:3]):  # Show top 3 sources
            response += f"{i+1}. {source}\n"

        return response

# Create RAG system
rag = RAGSystem(vector_store, model="gpt-4")

# Test queries
queries = [
    "What's your return policy?",
    "Do you offer international shipping?",
    "How can I contact customer support?",
    "What about warranties?"
]

for query in queries:
    print(f"{'='*60}")
    print(f"Q: {query}")
    print(f"{'='*60}")

    result = rag.query(query, top_k=3)
    print(f"A: {result['answer']}")
    print(f"\nRetrieved {len(result['retrieved_docs'])} relevant documents\n")
Enter fullscreen mode Exit fullscreen mode

Output:

============================================================
Q: What's your return policy?
============================================================
A: Our return policy allows returns within 30 days of purchase, provided you have the original receipt.

Retrieved 3 relevant documents

============================================================
Q: Do you offer international shipping?
============================================================
A: Yes, international shipping is available to over 100 countries worldwide.

Retrieved 3 relevant documents

============================================================
Q: How can I contact customer support?
============================================================
A: We offer 24/7 customer support through phone, email, and live chat.

Retrieved 3 relevant documents

============================================================
Q: What about warranties?
============================================================
A: All products come with a 1-year manufacturer warranty that covers defects.

Retrieved 3 relevant documents
Enter fullscreen mode Exit fullscreen mode

Step 5: Advanced RAG with Metadata Filtering

class AdvancedRAGSystem(RAGSystem):
    """RAG with metadata filtering"""

    def query_with_filters(
        self,
        question: str,
        filters: dict = None,
        top_k: int = 5
    ) -> dict:
        """
        Query with metadata filters.

        filters example: {"category": "returns", "department": "sales"}
        """
        # Search with filters (ChromaDB syntax)
        query_embedding = self.vector_store.embedding_model.encode([question]).tolist()

        where_clause = filters if filters else None

        results = self.vector_store.collection.query(
            query_embeddings=query_embedding,
            n_results=top_k,
            where=where_clause
        )

        # Format retrieved docs
        retrieved_docs = []
        for i in range(len(results['documents'][0])):
            retrieved_docs.append({
                'text': results['documents'][0][i],
                'distance': results['distances'][0][i],
                'metadata': results['metadatas'][0][i]
            })

        # Build context
        context = "\n\n".join([
            f"[Document {i+1}]\n{doc['text']}"
            for i, doc in enumerate(retrieved_docs)
        ])

        # Generate
        prompt = f"""Answer based on the context. If not in context, say you don't know.

Context:
{context}

Question: {question}

Answer:"""

        response = completion(
            model=self.model,
            messages=[{"role": "user", "content": prompt}],
            temperature=0.0
        )

        return {
            'answer': response.choices[0].message.content,
            'sources': [doc['text'] for doc in retrieved_docs],
            'retrieved_docs': retrieved_docs
        }

# Add documents with metadata
documents_with_metadata = [
    ("Returns are accepted within 30 days with receipt.", {"category": "returns", "department": "sales"}),
    ("Exchanges are free within 60 days of purchase.", {"category": "returns", "department": "sales"}),
    ("Technical support available 24/7 via phone.", {"category": "support", "department": "technical"}),
    ("Shipping is free over $50 within USA.", {"category": "shipping", "department": "logistics"}),
]

# Create new vector store with metadata
vector_store_meta = VectorStore(collection_name="docs_with_metadata")
texts = [doc[0] for doc in documents_with_metadata]
metadata = [doc[1] for doc in documents_with_metadata]
vector_store_meta.add_documents(texts, metadata)

# Query with filters
advanced_rag = AdvancedRAGSystem(vector_store_meta)

result = advanced_rag.query_with_filters(
    question="What's the policy on returns?",
    filters={"category": "returns"},  # Only search returns category
    top_k=3
)

print(f"Answer: {result['answer']}")
print(f"\nSources found (filtered to 'returns' category only):")
for source in result['sources']:
    print(f"- {source}")
Enter fullscreen mode Exit fullscreen mode

Output:

Answer: Returns are accepted within 30 days with the original receipt. Additionally, exchanges are free within 60 days of purchase.

Sources found (filtered to 'returns' category only):
- Returns are accepted within 30 days with receipt.
- Exchanges are free within 60 days of purchase.
Enter fullscreen mode Exit fullscreen mode

βš–οΈ Part 3: RAG vs Alternatives

Decision Framework

START
  β”‚
  β”œβ”€ Do you need the model to "know" new information?
  β”‚    β”œβ”€ NO β†’ Use base LLM (no RAG needed)
  β”‚    └─ YES β†’ Continue
  β”‚
  β”œβ”€ Does the information change frequently?
  β”‚    β”œβ”€ YES β†’ RAG (dynamic, real-time updates)
  β”‚    └─ MAYBE β†’ Continue
  β”‚
  β”œβ”€ Is the information private/proprietary?
  β”‚    β”œβ”€ YES β†’ RAG or Fine-tuning (don't put in training data)
  β”‚    └─ NO β†’ Continue
  β”‚
  β”œβ”€ How much data?
  β”‚    β”œβ”€ <10 docs β†’ Long context (put in prompt)
  β”‚    β”œβ”€ 10-10,000 docs β†’ RAG
  β”‚    └─ >10,000 docs or specialized domain β†’ RAG + possible fine-tuning
  β”‚
  β”œβ”€ Do you need the model to change its behavior/style?
  β”‚    β”œβ”€ YES β†’ Fine-tuning
  β”‚    └─ NO β†’ RAG
  β”‚
  └─ END
Enter fullscreen mode Exit fullscreen mode

Comparison Table

Approach Best For Cost Update Speed Complexity
Base LLM General knowledge already in model $ N/A Low
Long Context <10 documents, static info $$ Instant Low
RAG 10-10K docs, frequently updated $$$ Real-time Medium
Fine-tuning Specialized domain, behavior changes $$$$ Slow (retrain) High
RAG + Fine-tuning Large-scale specialized systems $$$$$ Mixed High

When to Use RAG

βœ… Use RAG when:

  • Information updates frequently (daily/weekly)
  • You have 10+ documents but <1M documents
  • Need to cite sources (show where answer came from)
  • Data is proprietary (can't put in training data)
  • Want to control what model can access
  • Need real-time information
  • Budget-conscious (cheaper than fine-tuning)

❌ Don't use RAG when:

  • Information fits in one prompt (use long context)
  • Need to change model behavior/style (use fine-tuning)
  • Need sub-millisecond response (caching might help)
  • Only have 1-2 documents (just put in prompt)

Real-World Example: Customer Support System

Scenario: E-commerce company, 500 help articles, updated weekly

Option 1: Long Context

  • Put all 500 articles in every prompt
  • Cost: 500 articles Γ— 500 tokens = 250K tokens per query
  • At $0.01/1K tokens: $2.50 per query
  • 10K queries/day = $25,000/day = $750K/month ❌

Option 2: RAG

  • Index 500 articles once
  • Retrieve top 5 relevant articles per query
  • Cost: 5 articles Γ— 500 tokens = 2.5K tokens per query
  • At $0.01/1K tokens: $0.025 per query
  • 10K queries/day = $250/day = $7,500/month βœ…

RAG is 100x cheaper for this use case.

Option 3: Fine-tuning

  • Train model on all 500 articles
  • Cost: $1,000-5,000 initial training
  • Must retrain weekly (articles update)
  • Annual cost: $50K-250K ❌
  • Plus: model might hallucinate (memorized but not retrieved)

🎯 Conclusion: RAG as Production Foundation

Retrieval-Augmented Generation bridges the gap between LLMs' general knowledge and your specific data.

The Business Impact:

πŸ’° Cost:

  • 10-100x cheaper than long context for large doc sets
  • No retraining costs (unlike fine-tuning)
  • Pay only for what you retrieve

πŸ“Š Quality:

  • Always uses latest information (no stale knowledge)
  • Citable sources (transparency and trust)
  • Controlled access (retrieves only relevant data)

⚑ Performance:

  • Real-time updates (add/remove docs instantly)
  • Scales to millions of documents
  • Fast retrieval (<100ms typical)

Key Takeaways for Data Engineers

On RAG Architecture:

  • Three stages: Indexing (offline), Retrieval (query-time), Generation (response)
  • Chunking strategy affects retrieval quality
  • Embeddings model choice impacts accuracy
  • Action: Start with all-MiniLM-L6-v2 (384d), upgrade if needed
  • ROI Impact: Proper chunking = 30-50% better retrieval accuracy

On Implementation:

  • Use vector databases (ChromaDB, FAISS, Pinecone, Weaviate)
  • Metadata filtering enables domain-specific retrieval
  • Monitor retrieval quality (are top-K results relevant?)
  • Action: Build evaluation set of 50-100 query/answer pairs
  • ROI Impact: 1% retrieval accuracy = measurable answer quality

On When to Use RAG:

  • Default choice for 10-10K documents
  • Essential for frequently updated information
  • Cheaper than alternatives for most use cases
  • Action: Use decision framework, measure actual costs
  • ROI Impact: $742K/month savings example (vs long context)

The RAG ROI Pattern

Every decision follows this pattern:

  1. Measure your data β†’ How many docs? How often updated?
  2. Calculate costs β†’ Long context vs RAG vs fine-tuning
  3. Start simple β†’ Basic RAG with default embedding model
  4. Optimize iteratively β†’ Better chunking, metadata, reranking

Real-World Example:

Legal tech company analyzing contracts:

Before RAG:

  • Manual search through 50K contracts
  • 30 minutes per contract to find relevant clauses
  • 100 contracts/day = 50 hours/day of paralegal time
  • Cost: $2,500/day labor

After RAG:

  • Indexed all 50K contracts (one-time, 2 hours)
  • RAG retrieves relevant clauses instantly
  • Paralegals review only retrieved sections (5 min/contract)
  • 100 contracts/day = 8.3 hours/day of paralegal time
  • Cost: $415/day labor + $50/day API

Savings: $2,085/day = $522K/year

This is why RAG matters. Not as a buzzwordβ€”but as the practical foundation for connecting LLMs to real-world data at scale.


Next: We'll dive deep into chunking strategies (Article 8) - the critical factor that determines RAG quality.

Top comments (0)