DEV Community

Cover image for VS Code Extension that Generates Documentation Using AI
Hahnbee Lee
Hahnbee Lee

Posted on

VS Code Extension that Generates Documentation Using AI

There's this fairly new extension on the VS Code marketplace called AI Doc Writer for JavaScript, TypeScript, and Python. Here's what the README says:

Step 1 Highlight code
Step 2 Click on the Write Docs button (or hit ⌘ + .)

So, I put it to the test to see how good it really is.

Here's how it fared on some JS code:
Image description

/**
 * return a set of all the subjects in the fullCoursesArray.
 * @returns A set of all the subjects.
 */
function getAllSubjects(): ReadonlySet<string> {
  const set = new Set<string>();
  fullCoursesArray.forEach(it => set.add(it.subject));
  return set;
}

/**
 * For each subject, if it has a color, do nothing. Otherwise, give it a random color from the color
set.
 * @param subjectColors - The subject colors that are currently in use.
 * @returns A new object with the same keys as the original object, but with new values.
 */
export function allocateAllSubjectColor(
  subjectColors: Record<string, string>
): Record<string, string> {
  const subjectsColorsCopy = { ...subjectColors };
  getAllSubjects().forEach(subject => {
    if (subjectsColorsCopy[subject]) return;
    subjectsColorsCopy[subject] = coursesColorSet[
      Math.floor(Math.random() * coursesColorSet.length)
    ].hex.substring(1);
  });
  return subjectsColorsCopy;
}

/**
 * Update the subjectColors object with the new color for the given subject.
 * @param subjectColors - The current subject colors.
 * @param {string} color - The color to be applied to the subject.
 * @param {string} code - The subject code of the subject to update.
 * @returns A new object with the updated color.
 */
export function updateSubjectColor(
  subjectColors: Record<string, string>,
  color: string,
  code: string
): Record<string, string> {
  const subjectsColorsCopy = { ...subjectColors };
  getAllSubjects().forEach(subject => {
    if (subject === code) {
      subjectsColorsCopy[subject] = color;
    }
  });
  return subjectsColorsCopy;
}

/**
 * When the user clicks outside of the element, the `clickOutside` event handler is called.
 */
export const clickOutside = {
  // eslint-disable-next-line @typescript-eslint/no-explicit-any
  beforeMount(el: any, binding: any): void {
    el.clickOutsideEvent = (event: Event) => {
      if (!(el === event.target || el.contains(event.target))) {
        binding.value(event, el);
      }
    };
    document.body.addEventListener('click', el.clickOutsideEvent);
  },
  // eslint-disable-next-line @typescript-eslint/no-explicit-any
  unmounted(el: any): void {
    document.body.removeEventListener('click', el.clickOutsideEvent);
  },
};
Enter fullscreen mode Exit fullscreen mode

I also tried it on some Python code:

def collect_dataset():
    '''
    The function is used to collect the data from the github repository.


    :return: A matrix of the dataset.
    '''
    response = requests.get(
        "https://raw.githubusercontent.com/yashLadha/"
        + "The_Math_of_Intelligence/master/Week1/ADRvs"
        + "Rating.csv"
    )
    lines = response.text.splitlines()
    data = []
    for item in lines:
        item = item.split(",")
        data.append(item)
    data.pop(0)  # This is for removing the labels from the list
    dataset = np.matrix(data)
    return dataset


def run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta):
    '''
    This function runs the gradient descent algorithm.

    :param data_x: the data matrix
    :param data_y: the actual y values
    :param len_data: the number of data points
    :param alpha: learning rate
    :param theta: The initial value of theta
    :return: Theta
    '''
    n = len_data

    prod = np.dot(theta, data_x.transpose())
    prod -= data_y.transpose()
    sum_grad = np.dot(prod, data_x)
    theta = theta - (alpha / n) * sum_grad
    return theta


def sum_of_square_error(data_x, data_y, len_data, theta):
    '''
    It calculates the sum of squared error for the given data and the given theta.

    :param data_x: the data matrix
    :param data_y: the y values of the data
    :param len_data: the number of data points
    :param theta: theta vector
    :return: The sum of the squares of the errors.
    '''
    prod = np.dot(theta, data_x.transpose())
    prod -= data_y.transpose()
    sum_elem = np.sum(np.square(prod))
    error = sum_elem / (2 * len_data)
    return error


def run_linear_regression(data_x, data_y):
    '''
    Runs gradient descent on the data and returns the final theta vector.

    :param data_x: The training data
    :param data_y: The dependent variable
    :return: Theta
    '''
    iterations = 100000
    alpha = 0.0001550

    no_features = data_x.shape[1]
    len_data = data_x.shape[0] - 1

    theta = np.zeros((1, no_features))

    for i in range(0, iterations):
        theta = run_steep_gradient_descent(
            data_x, data_y, len_data, alpha, theta)
        error = sum_of_square_error(data_x, data_y, len_data, theta)
        print("At Iteration %d - Error is %.5f " % (i + 1, error))

    return theta
Enter fullscreen mode Exit fullscreen mode

What do you guys think?

Top comments (10)

Collapse
 
cloudkungfu profile image
Javel Rowe

Seems to do a pretty good job and it kinda encourages us to give variables/params proper names too 😅

Collapse
 
andrewbaisden profile image
Andrew Baisden

I noticed that too.

Collapse
 
xapuu profile image
Xapuu

What sorcery is this :D , i guess i will be commenting my code from now on :D

/**
 * *When the user clicks on an image, set the focusedImageUrl to the image's url.*
 * @param imgUrl - The URL of the image to be displayed.
 * @returns None
 */
  focusImage(imgUrl) {
    this.focusedImageUrl = imgUrl;
  }
Enter fullscreen mode Exit fullscreen mode
Collapse
 
0wx profile image
Gilang Ramadhan 🈯️

Very nice, the summary is really well done, but the thing I really wish exist in the extension is ability to generate @example, I often use Github Copilot to generate the doc for me and they also gave me nice @example, but it's not the best experience generating doc with copilot, hopefully this extension can keep up the good work!

Collapse
 
pengeszikra profile image
Peter Vivo

Half success, don't recognise the arrow function return value

/**
 * Given two intervals, return the union of the two intervals.
 * @returns None
 */
export const union = ([Vm, VM], [Bm, BM]) => [ Math.max(Vm, Bm), Math.min(VM, BM)];

/**
 * Given a viewport and a bounding box, return the part of the bounding box that is visible in the
 * viewport.
 * @param view - the viewport, a 2-element array of the form [x, y]
 * @param box - the box to clip against
 * @param [] - `view` is the viewport, which is a box with two numbers.
 * @returns None
 */
export const clip = ( view, box, [a, b] = union(view, box)) => b > a ? [a, b] : false;
Enter fullscreen mode Exit fullscreen mode
Collapse
 
mridulnetizen profile image
Euxodous

Really nice extension, gonna definitely use it from now. Only afraid of the functionality that the comments surpasses maximum length of line and I would have to edit it each time :) . Would be even great if it detects some linting feature already enabled in the codebase. Anyways, thanks a lot for bringing this up!!

Collapse
 
highcenburg profile image
Vicente G. Reyes

Woah!

Collapse
 
blankscreenexe profile image
Muhammad Hammad Hassan

I neeeeed dis

Collapse
 
snam_jan_b77ca2b6b7b89890 profile image
snam jan

required sign in to use it but sign in also not working.

Collapse
 
skeetmtp profile image
Alban

Now I would love a similar plugin to solve one of the 2 hard things in compute science (martinfowler.com/bliki/TwoHardThin...) : Finding a name !
Select code -> AI suggest a proper name