*This is part of a series of Leetcode solution explanations (index). If you liked this solution or found it useful,* *please like**this post and/or* *upvote**my solution post on Leetcode's forums.*

####
Leetcode Problem #1695 (*Medium*): Maximum Erasure Value

####
*Description:*

*Description:*

(*Jump to*: *Solution Idea* || *Code*: *JavaScript* | *Python* | *Java* | *C++*)

You are given an array of positive integers

`nums`

and want to erase a subarray containingunique elements. The score you get by erasing the subarray is equal to the sum of its elements.Return

the.maximum scoreyou can get by erasingexactly onesubarrayAn array

`b`

is called to be a subarray of`a`

if it forms a contiguous subsequence of`a`

, that is, if it is equal to`a[l],a[l+1],...,a[r]`

for some`(l,r)`

.

####
*Examples:*

*Examples:*

Example 1: Input: nums = [4,2,4,5,6] Output: 17 Explanation: The optimal subarray here is [2,4,5,6].

Example 2: Input: nums = [5,2,1,2,5,2,1,2,5] Output: 8 Explanation: The optimal subarray here is [5,2,1] or [1,2,5].

####
*Constraints:*

*Constraints:*

- 1 <= nums.length <= 10^5
- 1 <= nums[i] <= 10^4

####
*Idea:*

*Idea:*

(*Jump to*: *Problem Description* || *Code*: *JavaScript* | *Python* | *Java* | *C++*)

Like most problems that ask about a contiguous subarray, this problem naturally calls for a **2-pointer sliding window** approach. There are a few ways we can keep track of the contents of the sliding window, but since the constraint upon **nums[i]** is fairly small, we can use the faster **arraymap** (**nmap**) method, rather than a **hashmap**.

So as we iterate our sliding window through **nums**, we'll move our **right** pointer forward, increasing the counter for the appropriate number in **nmap**. If that bucket in **nmap** goes above **1**, then we know that the newly-added number isn't unique in our sliding window, so we need to increase the **left** pointer until the counter is reduced back to **1**.

We should also, of course, keep track of the sum **total** of the sliding window. At each iteration, once we've confirmed the uniqueness of the contents of the sliding window, we should also update our **best** result so far. Then, once we're done, we can just **return best**.

**Time Complexity: O(N)**where**N**is the length of**nums****Space Complexity: O(10001)**for**nmap**keeping track of numbers from**0**to**10^4**

####
*Javascript Code:*

*Javascript Code:*

(*Jump to*: *Problem Description* || *Solution Idea*)

```
var maximumUniqueSubarray = function(nums) {
let nmap = new Int8Array(10001), total = 0, best = 0
for (let left = 0, right = 0; right < nums.length; right++) {
nmap[nums[right]]++, total += nums[right]
while (nmap[nums[right]] > 1)
nmap[nums[left]]--, total -= nums[left++]
best = Math.max(best, total)
}
return best
};
```

####
*Python Code:*

*Python Code:*

(*Jump to*: *Problem Description* || *Solution Idea*)

```
class Solution:
def maximumUniqueSubarray(self, nums: List[int]) -> int:
nmap, total, best, left = [0] * 10001, 0, 0, 0
for right in nums:
nmap[right] += 1
total += right
while nmap[right] > 1:
nmap[nums[left]] -= 1
total -= nums[left]
left += 1
best = max(best, total)
return best
```

####
*Java Code:*

*Java Code:*

(*Jump to*: *Problem Description* || *Solution Idea*)

```
class Solution {
public int maximumUniqueSubarray(int[] nums) {
short[] nmap = new short[10001];
int total = 0, best = 0;
for (int left = 0, right = 0; right < nums.length; right++) {
nmap[nums[right]]++;
total += nums[right];
while (nmap[nums[right]] > 1) {
nmap[nums[left]]--;
total -= nums[left++];
}
best = Math.max(best, total);
}
return best;
}
}
```

####
*C++ Code:*

*C++ Code:*

(*Jump to*: *Problem Description* || *Solution Idea*)

```
class Solution {
public:
int maximumUniqueSubarray(vector<int>& nums) {
char nmap[10001]{0};
int total = 0, best = 0;
for (int left = 0, right = 0; right < nums.size(); right++) {
nmap[nums[right]]++, total += nums[right];
while (nmap[nums[right]] > 1)
nmap[nums[left]]--, total -= nums[left++];
best = max(best, total);
}
return best;
}
};
```

## Top comments (0)