DEV Community

loading...
Cover image for Solution: Roman to Integer

Solution: Roman to Integer

seanpgallivan profile image seanpgallivan Updated on ・4 min read

This is part of a series of Leetcode solution explanations (index). If you liked this solution or found it useful, please like this post and/or upvote my solution post on Leetcode's forums.


Leetcode Problem #13 (Easy): Roman to Integer


Description:


(Jump to: Solution Idea || Code: JavaScript | Python | Java | C++)

Roman numerals are represented by seven different symbols: I, V, X, L, C, D and M.

Symbol Value
I 1
V 5
X 10
L 50
C 100
D 500
M 1000

For example, 2 is written as II in Roman numeral, just two one's added together. 12 is written as XII, which is simply X + II. The number 27 is written as XXVII, which is XX + V + II.

Roman numerals are usually written largest to smallest from left to right. However, the numeral for four is not IIII. Instead, the number four is written as IV. Because the one is before the five we subtract it making four. The same principle applies to the number nine, which is written as IX. There are six instances where subtraction is used:

  • I can be placed before V (5) and X (10) to make 4 and 9.
  • X can be placed before L (50) and C (100) to make 40 and 90.
  • C can be placed before D (500) and M (1000) to make 400 and 900.

Given a roman numeral, convert it to an integer.


Examples:

Example 1:
Input: s = "III"
Output: 3
Example 2:
Input: s = "IV"
Output: 4
Example 3:
Input: s = "IX"
Output: 9
Example 4:
Input: s = "LVIII"
Output: 58
Explanation: L = 50, V= 5, III = 3.
Example 5:
Input: s = "MCMXCIV"
Output: 1994
Explanation: M = 1000, CM = 900, XC = 90 and IV = 4.

Constraints:

  • 1 <= s.length <= 15
  • s contains only the characters ('I', 'V', 'X', 'L', 'C', 'D', 'M').
  • It is guaranteed that s is a valid roman numeral in the range [1, 3999].

Idea:


(Jump to: Problem Description || Code: JavaScript | Python | Java | C++)

The only really tricky thing about counting in roman numerals is when a numeral is used as a subtractive value rather than an additive value. In "IV" for example, the value of "I", 1, is subtracted from the value of "V", 5. Otherwise, you're simply just adding the values of all the numerals.

The one thing we should realize about the subtractive numerals is that they're identifiable because they appear before a larger number. This means that the easier way to iterate through roman numerals is from right to left, to aid in the identifying process.

So then the easy thing to do here would be to iterate backwards through S, look up the value for each letter, and then add it to our answer (ans). If we come across a letter value that's smaller than the largest one seen so far, it should be subtracted rather than added.

The standard approach would be to use a separate variable to keep track of the highest value seen, but there's an easier trick here. Since numbers generally increase in a roman numeral notation from right to left, any subtractive number must also be smaller than our current ans.

So we can avoid the need for an extra variable here. We do run into the case of repeated numerals causing an issue (ie, "III"), but we can clear that by multiplying num by any number between 2 and 4 before comparing it to ans, since the numerals jump in value by increments of at least 5x.

Once we know how to properly identify a subtractive numeral, it's a simple matter to just iterate backwards through S to find and return the ans.


Implementation:

Javascript and Python both operate with objects / disctionaries quite quickly, so we'll use a lookup table for roman numeral values.

Java and C++ don't deal with objects as well, so we'll use a switch case to function much the same way.


Javascript Code:


(Jump to: Problem Description || Solution Idea)

const roman = {'I':1,'V':5,'X':10,'L':50,'C':100,'D':500,'M':1000}

var romanToInt = function(S) {
    let ans = 0
    for (let i = S.length-1; ~i; i--) {
        let num = roman[S.charAt(i)]
        if (4 * num < ans) ans -= num
        else ans += num
    }
    return ans
};
Enter fullscreen mode Exit fullscreen mode

Python Code:


(Jump to: Problem Description || Solution Idea)

roman = {'I':1,'V':5,'X':10,'L':50,'C':100,'D':500,'M':1000}

class Solution:
    def romanToInt(self, S: str) -> int:
        ans = 0
        for i in range(len(S)-1,-1,-1):
            num = roman[S[i]]
            if 4 * num < ans: ans -= num
            else: ans += num
        return ans
Enter fullscreen mode Exit fullscreen mode

Java Code:


(Jump to: Problem Description || Solution Idea)

class Solution {
    public int romanToInt(String S) {
        int ans = 0, num = 0;
        for (int i = S.length()-1; i >= 0; i--) {
            switch(S.charAt(i)) {
                case 'I': num = 1; break;
                case 'V': num = 5; break;
                case 'X': num = 10; break;
                case 'L': num = 50; break;
                case 'C': num = 100; break;
                case 'D': num = 500; break;
                case 'M': num = 1000; break;
            }
            if (4 * num < ans) ans -= num;
            else ans += num;
        }
        return ans;
    }
}
Enter fullscreen mode Exit fullscreen mode

C++ Code:


(Jump to: Problem Description || Solution Idea)

class Solution {
public:
    int romanToInt(string S) {
        int ans = 0, num = 0;
        for (int i = S.size()-1; ~i; i--) {
            switch(S[i]) {
                case 'I': num = 1; break;
                case 'V': num = 5; break;
                case 'X': num = 10; break;
                case 'L': num = 50; break;
                case 'C': num = 100; break;
                case 'D': num = 500; break;
                case 'M': num = 1000; break;
            }
            if (4 * num < ans) ans -= num;
            else ans += num;
        }
        return ans;        
    }
};
Enter fullscreen mode Exit fullscreen mode

Discussion (4)

pic
Editor guide
Collapse
alfredosalzillo profile image
Alfredo Salzillo

Kind of a one-liner.
It's better to sum in reverse order.

const romanMap = {
  'I':1,
  'V':5,
  'X':10,  
  'L':50,
  'C':100,
  'D':500,
  'M':1000,
}
const roman = (v) => romanMap[v];
const romanToNumber = (s) => s
    .split('')
    .reverse()
    .map(roman)
    .reduce((
        sum,
        value,
        i,
        { [i - 1]: prev = 0 },
        ) => (sum + Math.sign(value - prev) || 1) * value), 0);
Enter fullscreen mode Exit fullscreen mode
Collapse
seanpgallivan profile image
seanpgallivan Author

The one-liners are never quite as performant as the more standard code, but I do love one-line solutions!

Suggestions: You can simplify/speed up the solution a bit by condensing the .split() and .map(), while converting to a faster 16-bit typed array with Uint16Array.from(). Then, you can also simplify the .reduce() a bit as well.

const romanMap = {
  'I':1,
  'V':5,
  'X':10,  
  'L':50,
  'C':100,
  'D':500,
  'M':1000,
}
const romanToNumber = s => Uint16Array.from(s, n => romanMap[n])
    .reverse()
    .reduce((sum,value) => sum + (value * 4 < sum ? -value : value));
Enter fullscreen mode Exit fullscreen mode
Collapse
thefluxapex profile image
Ian Pride

Very impressive, you have me inspired to write this in Rust. I have actually considered doing this many years ago, but, of course, I never got around to it and forgot about it.

Collapse
seanpgallivan profile image
seanpgallivan Author

Awesome. Feel free to drop the code in the comments here if you do!!