DEV Community

Abhishek Chaudhary
Abhishek Chaudhary

Posted on

1

All Paths From Source to Target

Given a directed acyclic graph (DAG) of n nodes labeled from 0 to n - 1, find all possible paths from node 0 to node n - 1 and return them in any order.

The graph is given as follows: graph[i] is a list of all nodes you can visit from node i (i.e., there is a directed edge from node i to node graph[i][j]).

Example 1:

Input: graph = [[1,2],[3],[3],[]]
Output: [[0,1,3],[0,2,3]]
Explanation: There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.

Example 2:

Input: graph = [[4,3,1],[3,2,4],[3],[4],[]]
Output: [[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]

Constraints:

  • n == graph.length
  • 2 <= n <= 15
  • 0 <= graph[i][j] < n
  • graph[i][j] != i (i.e., there will be no self-loops).
  • All the elements of graph[i] are unique.
  • The input graph is guaranteed to be a DAG.

SOLUTION:

class Solution:
    def allPathsSourceTarget(self, graph: List[List[int]]) -> List[List[int]]:
        n = len(graph)
        op = []
        paths = [([0], {0})]
        while len(paths) > 0:
            curr, visited = paths.pop()
            if curr[-1] == n - 1:
                op.append(curr)
            for newcurr in graph[curr[-1]]:
                if newcurr not in visited:
                    paths.append((curr + [newcurr], visited.union({newcurr})))
        return op
Enter fullscreen mode Exit fullscreen mode

Sentry image

See why 4M developers consider Sentry, “not bad.”

Fixing code doesn’t have to be the worst part of your day. Learn how Sentry can help.

Learn more

Top comments (0)

AWS GenAI LIVE image

How is generative AI increasing efficiency?

Join AWS GenAI LIVE! to find out how gen AI is reshaping productivity, streamlining processes, and driving innovation.

Learn more

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay