DEV Community

Abhishek Chaudhary
Abhishek Chaudhary

Posted on

1 1

Loud and Rich

There is a group of n people labeled from 0 to n - 1 where each person has a different amount of money and a different level of quietness.

You are given an array richer where richer[i] = [ai, bi] indicates that ai has more money than bi and an integer array quiet where quiet[i] is the quietness of the ith person. All the given data in richer are logically correct (i.e., the data will not lead you to a situation where x is richer than y and y is richer than x at the same time).

Return an integer array answer where answer[x] = y if y is the least quiet person (that is, the person y with the smallest value of quiet[y]) among all people who definitely have equal to or more money than the person x.

Example 1:

Input: richer = [[1,0],[2,1],[3,1],[3,7],[4,3],[5,3],[6,3]], quiet = [3,2,5,4,6,1,7,0]
Output: [5,5,2,5,4,5,6,7]
Explanation:
answer[0] = 5.
Person 5 has more money than 3, which has more money than 1, which has more money than 0.
The only person who is quieter (has lower quiet[x]) is person 7, but it is not clear if they have more money than person 0.
answer[7] = 7.
Among all people that definitely have equal to or more money than person 7 (which could be persons 3, 4, 5, 6, or 7), the person who is the quietest (has lower quiet[x]) is person 7.
The other answers can be filled out with similar reasoning.

Example 2:

Input: richer = [], quiet = [0]
Output: [0]

Constraints:

  • n == quiet.length
  • 1 <= n <= 500
  • 0 <= quiet[i] < n
  • All the values of quiet are unique.
  • 0 <= richer.length <= n * (n - 1) / 2
  • 0 <= ai, bi < n
  • ai != bi
  • All the pairs of richer are unique.
  • The observations in richer are all logically consistent.

SOLUTION:

class Solution:
    def loudAndRich(self, richer: List[List[int]], quiet: List[int]) -> List[int]:
        n = len(quiet)
        graph = {}
        for a, b in richer:
            graph[b] = graph.get(b, []) + [a]
        answer = [0] * n
        for beg in range(n):
            paths = [beg]
            visited = {beg}
            while len(paths) > 0:
                curr = paths.pop()
                for j in graph.get(curr, []):
                    if j not in visited:
                        visited.add(j)
                        paths.append(j)
            answer[beg] = min(visited, key = lambda p: quiet[p])
        return answer
Enter fullscreen mode Exit fullscreen mode

AWS Q Developer image

Your AI Code Assistant

Generate and update README files, create data-flow diagrams, and keep your project fully documented. Built to handle large projects, Amazon Q Developer works alongside you from idea to production code.

Get started free in your IDE

Top comments (0)

Qodo Takeover

Introducing Qodo Gen 1.0: Transform Your Workflow with Agentic AI

Rather than just generating snippets, our agents understand your entire project context, can make decisions, use tools, and carry out tasks autonomously.

Read full post

👋 Kindness is contagious

Please leave a ❤️ or a friendly comment on this post if you found it helpful!

Okay